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In this Letter, we propose an efficient compression algorithm for multi-spectral images having a few bands. First,
we propose a low-complexity removing spectral redundancy approach to improve compression performance.
Then, a bit plane encoding approach is applied to each band to complete the compression. Finally, the experi-
ments are performed on multi-spectral images. The experiment results show that the proposed compression
algorithm has good compressive property. Compared with traditional approaches, the proposed method
can decrease the average peak signal noise ratio by 0.36 dB at 0.5 bpp. The processing speed reaches
23.81MPixels/s at the working frequency of 88MHz, which is higher than the traditional methods. The proposed
method satisfies the project application.
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A class of multi-spectral CCD cameras is now heading for a
high spatial resolution and multi-spectral bands. These
cameras have a few bands, as many as ten bands. These
cameras have larger amounts of data than panchromatic
cameras. Therefore, it is necessary to compress multi-
spectral images of these CCD cameras by using a higher
performance compressor. However, these cameras use a
so-called “mono-spectral” compressor. The compressor
independently compresses each band, which is considered
as a panchromatic image to complete. Since the redun-
dancy between bands is not considered, the compression
performance is lower. It is not suitable for multi-spectral
cameras having a few bands. In this Letter, we provide
an efficient compression algorithm for these cameras.
Considering the application for a satellite[1,2], the

complexity of multi-spectral compression approaches is
not too high. For multi-spectral images, the compression
approaches usually use prediction, transform, and vector
quantization. The prediction-based methods use the
previous encoded band to predict the current band.
The prediction error is encoded by an entropy coding algo-
rithm, such as an adaptive binary arithmetic encoding.
The prediction-based approaches are widely used by 3D
image (such as multi-spectral, hyper-spectral image) com-
pression. For now, to cover 1D, 2D, and 3D coefficients,
prediction algorithms include hundreds of predictors.
For the on-board application, themain predictionmethods
were differential pulse-code modulation (DPCM), adap-
tive DPCM, Consultative Committee for Space Data
Systems-Lossless Data Compression (CCSDS-LDC),
CCSDSMultispectral and Hyperspectral Data Compres-
sion (CCSDS-MHDC), Joint Photographic Experts
Group-Lossless Standard (JPEG-LS), and lookup table

(LUT). They obtain the better compression performance
for lossless compression. The prediction-based approaches
are very simple and realized easily in hardware. However,
the prediction-based methods have a much poorer perfor-
mance on error resilience and a much lower lossy compres-
sion performance.

The transform-based multi-spectral compression meth-
ods mainly use the 3D transform. The 3D transform
mainly includes two types: (1) an ordinary 3D transform,
such as a 3D discrete wavelet transform (3D-DWT) or a
3D discrete cosine transform (3D-DCT); (2) a 2D trans-
form in combination with other transform. For the first
type of method, the ordinary 3D transform is applied to
obtain transform coefficients. Then, the transformed coef-
ficients are encoded by a 2D embedded zerotree wavelet
(2D-EZW)[3], 3D embedded block coding with optimized
truncation (3D-EBCOT)[4], 3D set partitioning in hierar-
chical trees (3D-SPIHT), a 3D set partitioning embedded
block (3D-SPECK)[5], and so on. The 3D transform-based
methods can remove the spatial, spectral, and sign redun-
dancy of multi-spectral images. Therefore, these methods
have much better compression performance. However,
they not only have the problem of complex storage man-
agements but also have the high hardware complexity of
compressors. In addition, these methods are only suitable
for cameras having many bands. For the second type of
method, the 2D transform is completed by a 2D-DWT,
a 2D-DCT, a fast Fourier transform (FFT), a Walsh–Ha-
damard transform[6], and so on. The other transform is
completed by the Karhunen–Loeve Transform (KLT)
or the principal component analysis (PCA)[7,8]. The KLT
can remove the spectral redundancy, and the 2D trans-
form removes the spatial redundancy. These approaches
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also have much better compression performance and are
also suitable for the multi-spectral images that have a
few bands.
Considering the spectral redundancy for few bands

multi-spectral images, we proposed a low-complexity
compression algorithm based on removing spectral redun-
dancy in combination with bit-plane encoding (RSRA-
BPE). The proposed method has potential applications
in an on-orbit remote sensing off-axis three-mirror
camera[9,10].
A multi-spectral CCD is composed of several CCD ar-

rays in parallel and produces several bands simultane-
ously. Figure 1 shows the process of multi-spectral CCD
imaging. The optics reflected and radiated by the ground
target converges on the optical thin film of the CCD sur-
face through the optical system. Each band CCD array
captures optical energy to obtain the corresponding
spectral band image. Each band image contains 1D spatial
information of ground objects. At this point, the 1D spec-
tral and 1D spatial image is obtained by this multi-
spectral CCD camera. When the camera moves along the
push-broom direction, other 1D spatial information of
ground objects is obtained. Therefore, the multi-spectral
CCD camera produces 3D images. Because several bands,
including the same ground objects, are obtained simulta-
neously by the same multi-spectral CCD, the 3D images
produced have spatial and spectral redundancy. For the
same two spatial locations, image blocks A and B located
separately in the two adjacent bands, the spectral corre-
lation is defined as

ρðA;BÞ ¼
Pm

i¼1½ðai − E½a�Þðbi − E½b�Þ�����������������������������������������������������������������������������Pm
i¼1 ðai − E½a�Þ2 Pm

i¼1 ðbi − E½b�Þ2p ; (1)

where ai is denoted as the pixels of A, bi is denoted as the
pixels of B, E½a� is denoted as the mean value of A, E½b� is
denoted as the mean value of B, and m is denoted as the
total number of pixels of one image block. According to
Eq. (1), we test the spectral correlation of multi-spectral
images having a few bands. We use the multi-spectral im-
ages that have four bands, which were taken by the SPOT
satellite, and the ground standard resolution figure that
was obtained by testing the multi-spectral time delay
and integration CCD (TDICCD) camera in the calibration
laboratory. The spectral correlation coefficients tested are
shown in Fig. 2. The correlation coefficient ρ is greater than
0.7 between the adjacent bands. Therefore, comparing the
difference between many and few bands multi-spectral
images, the multi-spectral images have a stronger spectral
correlation, which is considered in the process of
compression.

To weigh the computational complexity and compres-
sion performance, we proposed an efficient low-complexity
removing spectral redundancy (LRSR) algorithm for
multi-band CCD images.

We consider every two bands as one group. We define
the total number of bands of the multi-spectral CCD cam-
era as P. So, all bands are divided into P∕2 groups. We use
the Pearson-based approach to regroup the spectral
bands. The correlation coefficients of two bands (denoted
as X and Y ) can be expressed as[11]

Fig. 1. Process of multi-spectral CCD imaging.
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ρX ;Y ¼ CovðX ;Y Þ
SDðXÞSDðY Þ

¼ E½ðX − EðXÞÞðY − EðY ÞÞ�������������������������������������
EððX − EðXÞÞ2Þ

p �������������������������������������
EððY − EðY ÞÞ2Þ

p : (2)

ρX ;Y ∈ ½−1; 1� if ρX ;Y > 0, so X and Y are relevant. If
ρX ;Y ¼ 0, then X and Y are irrelevant. If ρX ;Y < 0, then
X and Y are inversely relevant. The two bands having the
maximum value for jρX ;Y j are considered as one group.
Each group performs removing spectral redundancy

(RSR) to produce one main band and one sparse band.
The energy of one band of the group is focused into the
main band. The correlation of the group is removed. After
all groups are processed, the next level RSR is performed.
In the next level, the main bands are regrouped to be the
first level. That is, every two main bands are placed in one
group. In the level, each new group performs the RSR
process. After all groups in the level are processed by
RSR, the next level RSR is performed the same way as
it was previously. Each level uses the same way to process.
The number of the level denoted as L is equal to log 2ðPÞ.
When processing level 1 ¼ L, all bands are processed by
RSR. The number of groups processed by RSR is denoted
as G. The G can be expressed as

G ¼ P
2
þ P

4
þ …þ P

2L
: (3)

Figure 3 shows the process of RSR when the band’s
number is 4. The process level number is 2. In the first
level, there are two groups. Group 1 is processed by
RSR to produce the main band G1 and the sparse band
G0

1. Group 2 is processed by RSR to produce the main
band G2 and the sparse band G0

2. In the second level,
G1 and G2 are considered to be Group 3. Group 3 is proc-
essed by RSR to be the main bandG3 and the sparse band
G0

3. Finally, all bands are processed to be one main band
G3 and three sparse bands G0

3, G
0
2, and G0

1.
The RSR is used to remove the correlation of two spec-

tral bands in each group. Consider each band of multi-
spectral images in a group as a matrix, the ith band in
a group is defined as

Hi ¼

2
666664

h1;1;i h2;1;i h3;1;i � � � hL;1;i
h1;2;i h2;2;i h3;2;i � � � hL;2;i

..

. ..
. ..

. ..
. ..

.

h1;M ;i h2;M ;i h3;M ;i � � � hL;M ;i

3
777775

L×M

; i ¼ 1;2;

(4)

where L is line number of the band, and M is the column
number of the band. Hi is composed of M line vectors.
Each line vector has L elements. Each matrix is regrouped
into a new matrix having only one line vector. The new
line vector is organized in a line vector stack. Then, H 1

and H 2 are merged into a new matrix H , which can be
expressed as

H ¼
�
H 0

1
H 0

2

�
¼

�
h1;1;1 h2;1;1 h3;1;1 � � � hL;M ;1

h1;2;2 h2;2;2 h3;2;2 � � � hL;M ;2

�
;

(5)

where H 0
1 and H 0

2 are the row matrixes stacked by each
row of H 1 and H 2, respectively. The mean value of each
band is denoted as B m, which can be expressed as

B m ¼ ½mean1; mean2 �; (6)

where mean1 and mean2 are the mean of H 1 and H 2,
respectively. By subtracting B m from the value of each
band, the M sub can be expressed as

Fig. 2. Spectral correlation testing of multi-spectral images.

Fig. 3. Process of RSR. The spectral bands number is 4.
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H ¼
�
h1;1;1 −mean1 h2;1;1 −mean1 h3;1;1 −mean1 � � � hL;M ;1 −mean1
h1;2;2 −mean2 h2;2;2 −mean2 h3;2;2 −mean2 � � � hL;M ;2 −mean2

�
: (7)

The covariance matrix of H is denoted as CovðH Þ, which
can be expressed as

CovðHÞ ¼ 1
4
HTH ¼

�
cov11 cov12
cov21 cov22

�
: (8)

The eigenvectors of CovðH Þ are defined as

V ¼
�
v11 v12
v21 v22

�
: (9)

The eigenvector can be computed using the covariance
matrix

v11 ¼ v22 ¼
������������������������������������������
1
2
þ ðcov11 − cov22Þ

2η

s
¼

���������������
1− v221

q
; (10)

v21 ¼ −v12 ¼
cov12
jcov12j

��������������������������������������
1
2
−
cov11 − cov22

2η

s
; (11)

η ¼
��������������������������������������������������������������������
ðcov11 − cov22Þ2 þ 4 cov12 cov21

q
: (12)

The diagonal matrix λ of CovðHÞ is defined as

λ ¼
�
λ1 0
0 λ2

�
: (13)

The diagonal matrix λ can be computed by Eqs. (7) and
(12) as

λ1 ¼
cov11 þ cov22 þ η

2
;

λ2 ¼
cov11 þ cov22 − η

2
; (14)

since

CovðH ÞV ¼ Vλ;

CovðH Þ ¼ VλV−1;

VT CovðH ÞV ¼ VTVλV−1V ¼ VTVλ: (15)

In addition,

VTV ¼
�

v211 þ v222 v11v21 þ v12v22
v11v21 þ v12v22 v221 þ v222

�
: (16)

Combined with Eqs. (9), (10), Eq. (15) can be expressed as

VTV ¼
�
v211 þ v222 0

0 v221 þ v222

�
: (17)

So, Eq. (15) can be expressed as

VT CovðHÞV ¼
�
λ1ðv211 þ v222Þ 0

0 λ2ðv221 þ v222Þ
�
¼ Λ;

(18)

where Λ is a diagonal matrix. In addition, there is

VT CovðHÞV ¼ 1
4
VTHHTV . (19)

Consider that G ¼ VTH , so

VT CovðHÞV ¼ 1
4
VTH ðVTHÞT ¼ 1

4
GGT ¼ CovðGÞ:

(20)

According to Eqs. (14) and (16), there is CovðGÞ ¼ Λ.
Because CovðGÞ is a diagonal matrix, the value of the off-
diagonal elements is zero. Therefore, the elements ofG are
irrelevant. So, the removing correlation computation
equation for multi-spectral images can be expressed as

G ¼ VTH : (21)

H can be obtained by multi-spectral images. According to
Eq. (20), the spectral redundancy can be removed. In real-
ity, our idea of RSR is the same with the KLT. However,
our algorithm uses only two bands to perform the compu-
tation. Therefore, our algorithm has low complexity.

In general, the pixel number of the multi-spectral CCD
is relatively large, such as 4096 pixels for each CCD. They
can cause the high-complexity for Eq. (20). We divided
each group into several sub-blocks (See Fig. 4), and each
sub-block is processed by RSR. In a group, each band is
divided into several sub-blocks. The sub-blocks that have
the same spatial location of two bands are regrouped into
new 3D images, which can be processed by RSR.

Note that the smaller K2 ×K 1 can impact the compres-
sion performance. We test four multi-spectral images, and
each group is 512 × 512 and has four bands.

From Fig. 5, when K1 ¼ K2 ¼ 64, the compression
performance begins to decrease. We use the other multi-
spectral images that have a few bands to analyze the
relationship between the peak signal-to-noise ratio (PSNR)
and the size of the sub-block. The same result is obtained.
We weigh the computation complexity against the com-
pression performance, and consider the CCD output line
by line. Therefore, we set K 2 ¼ 64, and K 1 ¼ N , where
N is the pixel number of each band.

B1 B2
1 2 2K K× ×

2M L× × Q

1 2 2K K× × 1 2 2K K× ×

1T 2T QT

Fig. 4. Spatial blocking.
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Based on the LRSR algorithm, Fig. 6 shows the whole
construction of our algorithm of multi-spectral images.
The compression algorithm contains two parts: (1) the
LRSR unit and (2) the removing spatial correlation (RSC)
unit. The LRSR unit is used to remove spectral redun-
dancy. The RSC unit is used to remove spatial redun-
dancy. The LRSR unit has five stages: (1) grouping, (2)
blocking, (3) 1-level RSR, (4) grouping, and (5) 2-level
RSR. In each level of RSR, Eqs. (4)–(21) are calculated
to remove spectral redundancy. The RSC unit has two
stages: (1) spatial sparse and (2) bit-plane coding. In
the spatial sparse stage, a 2D-DWT is applied to each
band. The BPE of the CCSDS-Image Data Compression
(IDC) is used to encode wavelet coefficients[12].

In order to evaluate the compression performance of
the proposed RSRA-BPE algorithm, we use the self-
development testing device. Figure 7 shows the testing ex-
periment scheme. The testing platform includes an image
simulation source, a multi-spectral compression system,
ground camera test device, a compression server, and a dis-
play system. The compression server can produce the simu-
lated multi-spectral images, which are transmitted to the
image simulation source unit. The image simulation source
unit adjusts the output line frequency, image size, and out-
put time to simulate the multi-spectral CCD output. The
multi-spectral compression system compresses the received
simulated multi-spectral images. The compression system
uses Virtex-PRO Xilinx FPGA with a 32 bit MicroBlaze
processor. The compressed streams are received and de-
coded by the ground camera test device unit. The recon-
structed image is transmitted to the compression server
and display system.

The compression server injects the SPOTmulti-spectral
images into the image simulation sources to test the
compression performance of the proposed approach. Each
group ofmulti-spectral images is 512pixels×512pixels×4.
The depth of the pixels is 8 bits/pixel (bpp). We compare
our algorithm with the CCSDS-IDC mono-spectral com-
pressor. Figure 8 shows the tested PSNR of the two meth-
ods at 0.5–3 bpp. From Fig. 8, the PSNR of our algorithm
improves to 0.36 dB more than the CCSDS-IDC mono-
spectral compressor at 0.5 bpp. Because we use the
multi-level RSR technology to remove the spectral redun-
dancy, our method outperforms the CCSDS-IDC mono-
spectral compression method.

We use multiple QuickBird satellite images to further
compare the performance of our method with those of
the CCSDS-IDC method and the Hadamard post-trans-
form (H-PT) method. The compression server injects
the QuickBird satellite testing multi-spectral images with
four bands. The reconstructed images perform the PSNR
analysis. We used different images from the testing image
database to measure the corresponding PSNRs. The aver-
age PSNR is considered as the PSNR of the method. The
calculated PSNRs of the different methods are shown in
Table 1. We perform other image quality assessments by
using the mean measure of structural similarity (MSSIM).
The MSSIMs are based on the hypothesis that the human
visual system (HVS) is highly adapted for extracting the
structure information. The MSSIM values at different
compressed ratios are shown in Fig. 9. Because we use sev-
eral key technologies, such as the multi-level RSR to re-
move the spectral redundancy and the BPE method,
our method outperforms the traditional on-orbit compres-
sion methods.

In order to analyze the process speed of our algorithm,
our algorithm is implemented by an FPGA processor. We
use a self-developed CCD camera to test the compression
time of our method. The line frequency of the CCD is
1.8094 kHz. The following compression speed of our algo-
rithm is only used to perform the evaluations of compres-
sion speed. The compression algorithm is not optimized

Fig. 5. Relation between compression performance and the size
of the block, where (a) is the testing of the multi-spectral image,
and (b) is the tested results.
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for the FPGA implementation. These evaluations are
based on the lossy compression of remote sensing multi-
spectral images with four bands. The size of each band
is 3072 × 128. Table 2 shows the comparison results of
the processing speed of our algorithm with traditional
approaches. From Table 1, the data throughput of our
algorithm reaches 23.81 MPixels/s at an 88 MHz working
frequency, which indicates that less time is spent than the
JPEG2000, KLT, and 3D-SPIHT approaches. The
compression time of 128 × 3072 needs only 16.51 ms.
According to the different principles of CCD imaging,
our compression algorithm can be optimized on an FPGA.
An optimized implementation on an FPGA can spend
minimal time. Overall, our algorithm has low complexity
and high performance and is very suitable for space
application.
In conclusion, we propose an efficient compression algo-

rithm for multi-spectral images that have a few bands.
First, we propose a low-complexity RSR approach to

, [ 1,1] Computation
X Yρ ∈ −

Fig. 6. Whole construct of the compression algorithm for multi-spectral images.

Fig. 7. Testing experiment scheme.

Fig. 8. Compression performance comparison with CCSDS-IDC.
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improve compression performance. Then, a BPE approach
is applied to each band to complete compression. Finally,
the experiments are performed on multi-spectral images.
The experiment results show that the proposed compres-
sion algorithm has good compressive properties. Com-
pared with traditional approaches, the proposed method
can decrease the average PSNR by 0.36 dB at 0.5 bpp.
However, the processing speed reaches 23.81 MPixels/s
at the working frequency of 88 MHz, which is higher
than traditional methods. The proposed the method
satisfies the project application. Our method adopts the
BPE method for encoding the transformed coefficients.
However, BPE cannot remove the residual spectral

redundancy. In the future, the distributed source coding
method can replace BPE for integrating the proposed
method for removing the residual spectral redundancy.
The proposed method can also be integrated into a com-
pressed sensing approach[16] to reduce the computational
complexity of the camera compressor.
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Fig. 9. MSSIM values at different compression ratios.

Table 1. PSNR of Three Different Methods

Bit rate
(bpp)

CCSDS-IDC
(dB)

H-PT
(dB)

Our method
(dB)

0.5 48.8146 49.0258 49.7822

1.0 52.5619 53.0898 53.6402

1.5 55.3620 56.0288 56.5707

2.0 57.2189 57.8321 58.3466

2.5 58.7636 58.8558 59.1888

3.0 59.6379 59.6850 59.7778

Table 2. Data Throughput Comparison with
Traditional Methods

Methods Data Throughput (MSPS)a

KLT[13] 9.77

3D-SPIHT[14] 16.04

JPEG2000[15] 5.52

Our approach 23.81
aMSPS, mega samples per second.
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