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Back conversion is an intrinsic phenomenon in nonlinear frequency down-conversion processes. However, the
physical reason for its occurrence is not well understood. Here, we theoretically reveal that back conversion
is the result of a π-phase jump associated with the depletion of one interacting wave. By suppressing the
idler phase jump through a deliberate crystal absorption, the back conversion can be inhabited, thus enhancing
the conversion efficiency from the pump to the signal. The results presented in this Letter will further the
understanding of nonlinear parametric processes and pave the way toward the design of highly efficient
down-conversion systems.
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Optical quadratic nonlinear processes, such as sum-
frequency generation (SFG), difference-frequency genera-
tion (DFG), and optical parametric amplification (OPA),
provide a powerful and flexible tool for generating coher-
ent light in the spectral regions inaccessible to laser emis-
sions. One important merit of such quadratic three-wave
nonlinear interactions lies in their outstanding designabil-
ity. On the one hand, various phase-matching schemes can
be applied, including quasi-phase matching (QPM)[1–3],
adiabatic phase matching[4], and multistep cascade phase
matching[5,6]. On the other hand, nonlinear crystals can
also be fabricated with distinct structures, including peri-
odically poled grating patterns[1–3] and sectional tiling[2,7],
and can be doped with rare-earth ions[8,9].
One inherent characteristic of quadratic nonlinear proc-

esses is that they allow both forward and backward energy
transfers among the interacting waves in the crystal[10].
Such back conversion will be detrimental when a unidirec-
tional energy transfer is desired. It is well known that
phase mismatch among the interacting waves can cause
back conversion, which can be prevented using QPM[1–3].
Under the perfect phase-matching conditions, however,
back conversion can still occur when one interacting wave
is depleted. This back conversion will set an ultimate limit
on the application performance of a quadratic nonlinear
process[11–14]. As of now, the physical reason for the occur-
rence of this back conversion is still unclear, and there is
still no effective method to inhibit it.
One can usually answer the most basic and important

questions about optics through the phase of a wave. A
phase jump of π widely exists in linear optics, such as the
half-wave loss associated with an interface reflection and
the Gouy phase-shift associated with beam focusing[15,16].
In this Letter, we numerically find an analog of this phase
jump in nonlinear optics, which occurs when one wave is

completely depleted in the process of three-wave inter-
actions. This nonlinear phase jump is indeed the origin of
back conversion in a phase-matched DFG process. From
this new perspective, we can explore a method to inhibit
such a back conversion, which has long been regarded as
impossible. For a parametric down-conversion process,
such as DFG or OPA, the back conversion can be inhib-
ited by removing the phase jump of the idler wave through
deliberate crystal absorption. Our studies would be
beneficial for a deep understanding of optical quadratic
nonlinear processes and pave the way toward the design
of highly efficient DFG systems.

We start with the standard nonlinear coupled-wave
equations that govern three-wave interactions (repre-
sented by W 1;W 2, and W 3, with the angular frequencies
ω1 < ω2 < ω3;ω1 þ ω2 ¼ ω3)

[10],
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¼ −i
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n1c
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2A3e−iΔkz ; (1)
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n3c

A1A2eiΔkz ; (3)

where AjðzÞ ¼ ρjðzÞ exp½iφjðzÞ� is the electric field
envelope, and ρj and φj refer to the amplitude and phase,
respectively. nj is the refractive index of the crystal, deff is
the effective nonlinear coefficient, and c is the light speed
in a vacuum. Δk ¼ k3 − k2 − k1 is the wave-vector mis-
match among the three interacting waves. After defining
a total phase θ ¼ Δkz − φ3ðzÞ þ φ2ðzÞ þ φ1ðzÞ, employing
the transformation eiθ ¼ cos θ þ i sin θ, and equating the
real and imaginary parts, Eqs. (1)–(3) become
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From Eqs. (4)–(6), we can see that the direction of the en-
ergy flow among the three interacting waves is determined
by sin θ. When sin θ < 0ðdρ3∕dz < 0; dρ1∕dz > 0;
dρ2∕dz > 0Þ, the energy flow is from wave W 3 to
waves W 1 and W 2 (i.e., W 3 → W 1 þW 2). When
sin θ > 0 ðdρ3∕dz > 0; dρ1∕dz < 0; dρ2∕dz < 0Þ, the en-
ergy flow is inverse, i.e., W 1 þW 2 → W 3. From the defi-
nition of θ, a phase accumulation due to Δk can induce the
symbol change of sin θ, so a phase mismatch can cause the
back conversion. However, here we only consider the per-
fect phase-matching condition (Δk ¼ 0Þ. In this case,
sin θ ¼ sin½φ1ðzÞ þ φ2ðzÞ− φ3ðzÞ�, that is, the direction
of the energy flowdepends on the phase changes of the three
interacting waves. Let us consider a DFG process, in which
only W 2 and W 3 are seeded onto the crystal. The initial
phases of these two waves are assumed to be equal to zero,
i.e., φ2ð0Þ ¼ 0, and φ3ð0Þ ¼ 0. In this case, the newly gen-
erated waveW 1 accommodates its phase to φ1ð0Þ ¼ −π∕2
in order to maximize the conversion rate from W 3 to W 1

and W 2ðsin θ ¼ −1Þ. As there is no phase mismatch,
sin θ remains at a value of −1 until the pump W 3 is com-
pletely depleted at a position z ¼ L0. From Eq. (9), when
ρ3 ¼ 0; dφ3∕dz → ∞, so there exists a phase jump on φ3.
This phase jump activates the back conversion in the
SFG. From Eqs. (4)–(6), to maximize the rate of
such a back conversion, it requires sin θ ¼ 1, i.e., φ1ðL0Þþ
φ2ðL0Þ− φ3ðL0Þ ¼ π∕2. As φ1ðL0Þ ¼ −π∕2 and φ2ðL0Þ ¼
0, φ3 has to jump from 0 to −π, i.e., φ3ðL0Þ ¼ −π. Such
a phase jump is the underlying reason for the back conver-
sion. At the position z ¼ 2L0, the idler will be completely
depleted. Similar to the above analysis, φ1ð2L0Þ will jump
from −π∕2 to π∕2 to change sin θ from 1 to −1 to activate
the forward DFG process again. In such a way, the forward
and backward conversions happen periodically. Note that
the phase of W 2 does not change with the distance during
the whole process, because it cannot be depleted at
any time.
To verify the above theoretical analysis, we numerically

solved Eqs. (1)–(3) by the symmetrized split-step Fourier
method. A DFG process with λ3 ¼ 532 and λ2 ¼ 800 nm in

a collinear phase-matched β-BBO crystal orientated at
22.05° was simulated. Pump wave W 3 is a Gaussian pulse
with a full width at half-maximum (FWHM) duration of
100 ps, and its peak intensity is 5 GW∕cm2, while the in-
cident signal wave W 2 is a super-Gaussian pulse with an
FWHM duration of 240 ps and a peak intensity of
1 GW∕cm2 (Fig. 1). Dispersions, walk-off, and diffraction
effects are all neglected in our calculations.

Figure 2 summarizes the calculated intensity and phase
evolutions of the three interacting waves in a 10-mm-long

Fig. 1. Pulse profiles of input wavesW 3 andW 2.A,B, andC are
the three calculation points in the following simulation
corresponding to t ¼ 0, 50, and 100 ps, respectively.

Fig. 2. Intensity and phase evolutions of the three interacting
waves. (a) Intensity evolutions of W 1 (blue solid curve), W 2

(red solid curve), and W 3 (black solid curve) within the crystal.
The black dashed curve represents the calculated value of sin θ.
(b) Phase evolutions of W 1 (blue curve), W 2 (red curve), and
W 3 (black curve) within the crystal. All the intensities and
phases in this figure are calculated at point A, as shown in Fig. 1.
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β-BBO crystal. Note that these results are calculated at
the local temporal coordinate of t ¼ 0 (i.e., point A in
Fig. 1). As is clearly shown in Fig. 2(a), the direction of
the energy flow depends on sin θ: when sin θ ¼ −1,
W 3 → W 1 þW 2, and when sin θ ¼ 1;W 1 þW 2 → W 3.
The sign of sin θ changes when one wave is depleted.
For example, when W 3 is depleted (ρ3 ¼ 0) at z ¼
1.84 mm; sin θ changes from−1 to 1; whenW 1 is depleted
(ρ1 ¼ 0) at z ¼ 3.68 mm, sin θ changes from 1 to −1.
Through these phase evolutions [Fig. 2(b)], we can see
that the full depletion of one wave indeed causes a π-phase
jump, which matches our theoretical analysis very well.
The phase of W 2 keeps a constant value of zero because
it cannot be depleted at any time. This is the reason why
the signal phase can be preserved in the DFG.
Although the back conversion process is activated by

the phase jump, its occurrence time depends on the cou-
pling intensity of the nonlinear interactions, as implied by
Eqs. (4)–(9). In our simulation, because pump pulse W 3
has a Gaussian temporal profile (Fig. 1), back conversion
will not take place simultaneously in the temporal domain.
Figure 3 shows the intensity evolutions ofW 2 at t ¼ 0, 50,
and 100 ps, respectively. Obviously, the higher pump in-
tensity (e.g., point A) drives an earlier and stronger back
conversion. Because the back conversion happens nonun-
iformly in the temporal domain, the energy of pump wave
W 3 (i.e., the integration of all the temporal coordinates)
can never be depleted completely, thus significantly
degrading the conversion efficiency from W 3 to W 2. The
effect of back conversion on the conversion efficiency is
more serious in the OPA, which is typically pumped by
a spatiotemporally Gaussian laser. To mitigate the back
conversion effects, the pump pulses can be shaped to a
flat-top profile, or the pump and signal pules can be
shaped to the conformal profiles[17,18]. However, these shap-
ing methods are all complicated and are also not appli-
cable to the short-pulse-pumped OPAs.
In most DFG and OPA processes, only one wave

(e.g., W 2, the signal) is desirable, with the other wave
(e.g., W 1, the idler) as a byproduct. The fundamental
method to inhibit the back conversion is to control the
phase of W 1. From the above analysis, if the phase of W 1

does not change with the distance, i.e., φ1ðzÞ ¼ −π∕2, the
back conversion will no longer happen. This requires that
the intensity of W 1 should remain unusually smaller than
that predicted by the Manley–Rowe relation[9]. Therefore,
the idler wave W 1 must be consumed by an additional
process. Linear crystal absorption is one convenient way
to deplete W 1. We assume that the absorption coefficient
of W 1 is α and rewrite Eq. (1) as

dA1

dz
¼ −i

ω1deff
n1c

A�
2A3e−iΔkz −

1
2
αA1: (10)

By numerically solving Eqs. (1)–(3) and (10), the intensity
and phase evolutions of the three waves under two absorp-
tion levels of αLnl ¼ 2 and 8 are summarized in Fig. 4,
where the nonlinear length Lnl, as defined in Ref. [18], is
fixed at 1.5 mm. By inducing an absorption of αLnl ¼ 8 on
W 1, the back conversion indeed no longer happens as ex-
pected, as shown in Fig. 4(b). At each position of the crys-
tal, it can be viewed as a DFG process without the
incidence of the idler. Therefore, phase φ1 keeps at −π∕2
across the entire crystal, while φ2 and φ3 remain at a con-
stant value of zero [Fig. 4(d)]. In this case, the conversion
fromW 3 toW 2 becomes unidirectional without back con-
version [Fig. 4(b)]. The inhibition of the back conversion
process ensures a complete depletion of W 3 and a maxi-
mum amplification of W 2.

In the case of αLnl ¼ 2, although the back conversion
can still occur initially, it will diminish gradually, as shown
in Fig. 4(a). Compared to the case of no absorption inW 1,
the depletion of W 1 is enhanced by the absorption, so its
phase jump takes place earlier than usual [Fig. 4(c)]. This
earlier phase jump activates the forward conversion proc-
ess before the end of a complete back conversion. In such a
way, W 2 still obtains a net gain in one forward–backward
conversion process. As a result, W 2 keeps rising with the
decreasing oscillation amplitude [Fig. 4(a)]. Finally, W 2

Fig. 3. Intensity evolutions of W 2 at three different temporal
points. The black, red, and blue curves correspond to points
A, B, and C in Fig. 1, respectively.

Fig. 4. Intensity and phase evolutions of W 1 (blue curves), W 2

(red curves), and W 3 (black curves) under the conditions of
αLnl ¼ 2 [(a) and (c)] and 8 [(b) and (d)]. All calculations corre-
spond to point A in Fig. 1.
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will approach to the quantum-limited intensity with neg-
ligible back conversion, and W 3 is almost completely de-
pleted. In practice, the choice of α depends on the initial
pump and signal intensities and also on the crystal length.
On the one hand, to effectively suppress the back conver-
sion, the value of α should be larger than a certain value,
αLnl > m (m ¼ 0.3 in the case of Ref. [9]). On the other
hand, to ensure a maximum conversion efficiency within
a limited crystal length L, the value of α should be smaller
than a certain value, αL < n.
Due to the suppression of the back conversion, each

temporal coordinate on W 2 can obtain a maximum gain
at the output end of the crystal (Fig. 5), which ensures the
maximum conversion efficiency regardless of the profile of
W 3. Figure 5 also implies that such a DFG process with
absorption in W 1 is robust against the variation of the
pump intensity. A more stable output can be expected
from such a DFG process without back conversion.
In conclusion, we reveal that the phase jump, accompa-

nied by one depleted interacting wave, is responsible for
the intrinsic back conversion in quadratic nonlinear proc-
esses. Based on this understanding, we find an effective
method to inhabit the back conversion in a parametric
down-conversion process. By using crystal absorption to
enhance the depletion of the undesirable wave, the back
conversion can be terminated, and the conversion effi-
ciency from the pump to the desirable wave could reach

the quantum limit. This method for suppressing the back
conversion by absorbing the idler wave is compatible with
the technique of noncollinear phase matching, so it applies
to broadband nonlinear amplification. In the case of
broadband amplification, absorption on a specific wave-
length (often corresponding to the magic wavelength)
can be obtained by doping specific rare-earth ions in an
yttrium calcium oxyborate crystal, as we did in Ref. [9]. In
addition to the linear absorption method, one could also
use a nonlinear method to deplete the undesirable wave,
e.g., designing a second-harmonic generation process for
this wave in the same crystal[19], which, however, is hard to
realize in conventional bulk crystals. The results presented
in this study further our understanding of quadratic non-
linear processes and pave the way toward the design of
highly efficient parametric down-converters.
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