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We present in this work a new mathematical model to analyze and evaluate optical phenomena occurring in the
nonuniform optical waveguide used in integrated optics as an optical coupler. By introducing some modifications
to the intrinsic integral, we perfectly assess the radiation field present in the adjacent medium of the waveguide
and, thus, follow the evolution of the optical coupling from the taper thin film to the substrate and cladding until
there is a total energy transfer. The new model that is introduced can be used to evaluate electromagnetic field
distribution in three mediums that constitute any nonuniform optical couplers presenting great or low wedge
angles.
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Optical waveguides constitute the basic elements of the in-
tegrated optical circuits. Their structure permit the con-
finement of light and the guiding of the energy flow of an
electromagnetic wave in a direction parallel to their inter-
faces[1,2]. The optical propagation in the waveguide is main-
tainedby the successive reflections on its interfaces.Among
themultitude of waveguides that exist in the optical indus-
try, we find nonuniformwaveguides, which present a linear
variation (decreasing or increasing) of the guiding film
thickness. The waveguide that will be analyzed in this
work is characterized by the decreasing of the guiding thin
film; the optical rays of an incident beam undergo internal
reflections on the interfaces of the waveguide until the
waveguide cut-off, where the phenomenon of radiation be-
comes important, which allows light to be coupled from the
nonuniform thin film to adjacent areas[2,3].
In this Letter, a new mathematical model based on the

concept of intrinsic modes will be proposed with the aim to
analyze and synthesize the propagation, radiation, and
optical coupling that occur in a nonuniform thin film used
as an optical coupler in integrated optics.
The mathematical model uses a spectral integral for

assessing the behaviour of the optical waves within the
nonuniform film of a greater refractive index, as well as
outside the waveguide in the substrate and the cladding
of lower refractive indexes[2,3].
The concept of intrinsic modes was first used in acoustic

underwater applications[4,5], before its uses in integrated
optics for the nonuniform structure[2,3,6–12]. To assess with
a great precision the radiation and the optical coupling oc-
curring in non uniform optical waveguide, some modifica-
tions will be introduced to themathematical model already
established for the intrinsic integral[2,3,6–12]. Intrinsic modes
are solutions of Maxwell’s equations, satisfying the boun-
dary conditions at the interfaces between the different

mediums[13]. The interest in the concept is because it allows
for determining the electromagnetic field distribution in all
mediums that constitute the waveguide, meaning the
tapered thin film, the substrate, and the cladding.

In this Letter we will introduce some modifications to
the mathematical model that is already established for
the intrinsic integral[2,3,10–12].

Many classical analytical and numerical methods are
used for the evaluation of the optical propagation in op-
tical waveguides. We can cite, for example, the beam
propagation method (BPM), the finite difference BPM
(FDBPM), and the effective index method[2,14–19], but
the method introduced in this Letter is global and univer-
sal and applicable for any nonuniform optical waveguide.

The basic structure of a tapered optical waveguide is
shown in Fig. 1. It consists of a nonuniform thin film that
serves as a waveguide of the refractive index (ng), which is
sandwiched by a substrate of the refractive index (ns) and
a cladding of the refractive index (nc).

The refractive index values are defined as: ng > ns > nc.
The thickness W of the waveguide decreases linearly, and
light is guided in the medium ng by successive reflections
on the waveguide boundaries.

Fig. 1. Configuration of the optical coupler to analyze.
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An incident ray in the nonuniform optical waveguide
undergoes multiple reflections on the I gc interface [tapered
guide (ng) and cladding (nc)] and the I gs interface [tapered
guide (ng) and a substrate (ns)]. The angle of incidence
increases gradually with the decreasing of the thickness
of the waveguide ‘W ’ (see Fig. 1).
Each pair of reflections on both interfaces increases the

angle of incidence on I gc (θþ) and I gs (θ−) by adding
twice the wedge angle ‘a’ formed by the two interfaces
I gc and I gs, which means that m pairs of reflections on
I gc and I gs will render the angles of incidence equal to
ðθþ−Þ þ 2ma[2,3,10–12,20]. After several reflections on the inter-
faces I gc and I gs, the angle of incidence will be greater than
the critical angle θc. There, we assist with a phenomena of
radiation, and the energy will, thus, start to be coupled to
the adjacent mediums nc and ns. This energy will increase
with the arrival of the subsequent light rays to form a beam
of light emerging in the adjacent mediums[3,20]. Because of
the refraction of the energy of the nonuniform optical
waveguide to the adjacent mediums (ns) and (nc), the
waveguide is considered as an optical coupler in addition
to its guiding property[2,20].
Some previous works using intrinsic modes[2,3,10–12] have

considered the presence of total and perfect reflections at
the I gc interface, and they posed the phase of the Fresnel
coefficient at the interface I gc equal to π. In our study, we
will treat the general case by using the exact phase of the
Fresnel coefficient introduced at the I gc interface, depend-
ing on the refracted index of each medium (ng or nc) to
determine the modified intrinsic integral; this case was
treated by Refs. [7,12,13], but they follow a different ap-
proach than those used by Refs. [6,8,9], and the math-
ematical expression found is different.
Using the complementary angles of that given in

Refs. [2,20], the phases of the Fresnel coefficients intro-
duced at I gc and I gs interfaces will be

ϕþ−ðθþ−Þ ¼ 2 arctan

 ��������������������������������������������
n2
g·cos2ðθþ−Þ− n2

c;s

n2
g − n2

g·cos2ðθþ−Þ

s !
: (1)

From an incident ray positioned atX0 to an observation
point X , we will have four kinds of rays: those who go first
towards I gc and will have even or odd reflections at inter-
faces I gc and I gs, respectively,Wþ

e ðX0;XÞandWþ
o ðX0;XÞ;

and those who go first towards I gs and will have even or
odd reflections at interfaces I gc and I gs, respectively,
W−

e ðX0;XÞ and W−
o ðX0;XÞ[3,20].

The cumulative phases (Φþ
eo) and (Φ−

eo)
[3] of waves

directed first towards, respectively, the I gc and I gs
interfaces, which undergo even or odd reflections, are
given as[3,20]

Φþ
e ðθ0; θnÞ ¼

Xn
m¼1

½ϕþðθþmÞ� þ
Xn
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½ϕ−ðθ−mÞ�; (2)
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e ðθ0; θnÞ− ϕ−ðθ−n Þ; (3)
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e ðθ0; θnÞ− ϕþðθþn Þ; (5)

where θ0 is the first incident angle at interface I gs, and θm
is the incident angle at the mth reflection. n is the maxi-
mum number of reflections on the two interfaces.

The relation between θ0 and θm after m reflections on
interfaces I gc and I gs is

[3,20]

θþ−
m ¼ θþ−

0 þ 2·a·ðm − 1Þ: (6)

The integer m is defined as

m ¼ 1þ θþ−
m − θþ−

0

2·a
: (7)

By applying the Euler–Maclaurin formula[3,20,21] to
Eqs. (3)–(5), we obtain discrete continuous sums:
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In Eqs. (8)–(11), Eþ
e ðθþn ;ϕþðθþn ÞÞ, Eþ

e ðθ−n ;ϕ−ðθ−n ÞÞ,
E−

e ðθ−n ;ϕ−ðθ−n ÞÞ, and E−
e ðθþn ;ϕþðθþn ÞÞ are the errors intro-

duced by the Euler–Maclaurin formula[3,11,21].
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The use or not of the Euler–Maclaurin errors depends
on the precision we want to have. But for the waveguides
that have a large wedge angle ‘a’, it is recommended that
these errors are calculated, which are expressed as[3,21]

Eðθ;ϕ�ðθÞÞ ¼ 2·
Xþ∞

q¼−∞

�
1

2·a

Z
θ

θ0

ϕ�ðθ0Þ

·cos
�
2·π·p·

�
1þ θ0 − θ0

2a

��
dθ0
�
: (12)

The expressions of the four kinds of rays defined previ-
ously are[3,11]

Wþ
e ðX0;XÞ ¼ Wþ

e ðθ0; θÞ
¼ Expfj·½ϕþ

e ðθ0; θÞ þ k·Rþ
e ðθ0; θÞ�g; (13)

Wþ
o ðX0;XÞ ¼ Wþ

o ðθ0; θÞ
¼ Expfj·½ϕþ

o ðθ0; θÞ þ k·Rþ
o ðθ0; θÞ�g; (14)
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¼ Expfj·½ϕ−
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¼ Expfj·½ϕ−

o ðθ0; θÞ þ k·R−
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where Rþ
e ðθ0; θÞ, Rþ

o ðθ0; θÞ, R−
e ðθ0; θÞ, and R−

o ðθ0; θÞ are
the geometrical lengths defined as[3,10,20]

Rþ
p ðθ0; θmÞ ¼ r0· cosðθ0 − a − x0Þ− r·cosðθ þ a − xÞ;

(17)

Rþ
i ðθ0; θmÞ ¼ r0· cosðθ0 − a − x0Þ− r·cosðθ − a þ xÞ;

(18)

R−
p ðθ0; θmÞ ¼ r0· cosðθ0 − a þ x0Þ− r·cosðθ − a þ xÞ;

(19)

R−
i ðθ0; θmÞ ¼ r0· cosðθ0 − a þ x0Þ− r·cosðθ þ a − xÞ:

(20)

We obtained the modified intrinsic integral as a spectrum
of all incident waves inside the optical waveguide after
using the Poisson transformation[3,10,20]:

W ðθ0; θÞ ¼
1
2a

Z
c

Xþ∞

q¼−∞
f½Wþ

e ðθ0; θÞ þWþ
o ðθ0; θÞ

þW−
e ðθ0; θÞ þW−

o ðθ0; θÞ�
·Expð−j·2π·q·mÞgdθ: (21)

In Eq. (17), the term ‘q’ represents the mode number.
To simplify the evaluation, we will normalize the new

model of the modified intrinsic integral. The normalized
model will be applied to evaluate the propagation inside
any tapered waveguide independently of the position of

the source, which is considered as source-free[2,3,5,8–11,20].
This can be explained by the fact that by considering it
source-free, its constant parameters will have a constant
influence in the phase of the modified intrinsic integral.

Because of the interdependence of the four waves that
are defined, we can evaluate the modified intrinsic integral
in two manners, by waves going first towards the upper
interface or waves first going down, as following[3,20].

For the first case, we will have at any observation point
in the waveguide (ng) as

WþðX ; θÞ ¼ 1
2a

Z
c
f½Wþ

e ðX ; θÞ þWþ
o ðX ; θÞ�

·Expð−j·2π·q·mÞgdθ; (22)

W−ðX ; θÞ ¼ 1
2a

Z
c
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e ðX ; θÞ þW−
o ðX ; θÞ�⋅

·Expð−j·2π·q·mÞgdθ: (23)

The two equations give us the variation of the field in-
side the nonuniform waveguide. The field variations in the
substrate and the cladding are given after adding the
Fresnel transmission coefficient (right side of the integral)
at each interface[3,5–7,20] as

WsðX ; θÞ ¼ 1
2a

Z
c

Xþ∞

q¼−∞
f½1þ Expðj·ϕ−Þ�

·Wþ
o ðX ; θÞExpð−j·2π·q·mÞgdθ; (24)

WsðX ; θÞ ¼ 1
2a

Z
c

Xþ∞

q¼−∞
f½1þ Expðj·ϕþÞ�

·W−
o ðX ; θÞExpð−j·2π·q·mÞgdθ: (25)

The numerical evaluation of the new mathematical
model given in Eqs. (18)–(20) is very difficult, because
we are in the presence of integrals using complex func-
tions. Various methods can be used to approximately as-
sess the spectral integral W ðX ; θÞ: we can name the
steepest descent path (SDP), the fast Fourier transform
(FFT), and the numerical method consisting of integra-
tion directly along the real axis of the incident angles θ
in the interval (0 < θ < π∕2)[3,4,10,11,13,20,22]. In our case, we
will approximately evaluate the modified intrinsic integral
by integration directly on the real axis because this
numerical method is less difficult and more rapid than the
others, and it permits for the computation of the electro-
magnetic field both in the propagation region and the
leaky wave region[2,3,10,20,23]. One has to note that in this
work, we have used the transverse electric (TE) mode,
and the same approach can be used in the transverse mag-
netic (TM) mode.

Figures 2 and 3 represent the electromagnetic distribu-
tion field in three regions of a symmetric polymer wave-
guide constituted by a polymer tapered thin film of the
refractive index ng ¼ 1.77, which is surrounded by a sub-
strate and a cladding silica (SiO2) of the refractive index
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ns ¼ nc ¼ 1.45 at the wavelength λ ¼ 1 μm[22]. In Figs. 2
and 3, the intrinsic field is normalized to a maximum value
of each mode (second and third mode), and the field
distribution is as follows: x < 0 rad in the substrate (ns),
0 < x < 0.03 rad in the tapered thin film (ng), and
x > 0.03 rad in the cladding (nc).
The dashed graph in Fig. 2 represents the intrinsic field

distribution before the waveguide cut-off at the waveguide
thickness ofW ¼ 3 μm, and the solid line graph represents
the field distribution after the waveguide cut-off at the
waveguide thickness of W ¼ 0.4 μm.
We can note that in Fig. 2 there is symmetry in the dis-

tribution of the intrinsic field in the substrate and the
cladding. Before the waveguide cut-off, the field is concen-
trated in the guide ng, but after the cut-off, we assist in an
optical coupling of the field by radiation in the adjacent
mediums (ns and nc), which is constituted of substrate
and cladding in a symmetric way. The same remark
can be made for the third mode represented by Fig. 3.
Figures 4 and 5 show exactly how the optical coupling

occurs from the tapered waveguide to the adjacent medi-
ums by the radiation phenomena for two symmetric wave-
guides. The first waveguide is the AlAsGa/AsGa/AlAsGa
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Fig. 2. Second intrinsic normalized mode (q ¼ 2) of a symmetric
polymer optical waveguide for the wedge angle a ¼ 0.03 rad. The
dashed graph represents the normalized intrinsic field at a thick-
ness ofW ¼ 3 μm, and the solid line represents the intrinsic field
at thickness W ¼ 0.4, which is lower than the cut-off thickness.

-0,18 -0,12 -0,06 0,00 0,06 0,12 0,18
0,0

0,2

0,4

0,6

0,8

1,0
n

g
n

s
n

c W=0.9µm
W=4µm

N
o

rm
al

iz
ed

 In
tr

in
si

c 
M

o
de

 3

Transverse Angle (rad)

Fig. 3. Third intrinsic normalized mode (q ¼ 3) of a symmetric
polymer optical waveguide for the wedge angle a ¼ 0.03 rad. The
dashed graph represents the normalized intrinsic field at a thick-
ness of W ¼ 4 μm, and the solid line represents the field at a
thickness of W ¼ 0.9, which is lower than the cut-off thickness.

0,5 1,0 1,5 2,0 2,5 3,0
0

10

20

30

40

50

60

70

80

90

100

P
ow

er
 D

is
tr

ib
u

ti
on

 (%
)

Waveguide Thickness ( )

 In the substrate (n
s
)

 In the cladding(n
c
)

 In the guide (n
g
)

0,0 0,2 0,4 0,6 0,8 1,0
0

10

20

30

40

50

60

70

80

90

100

 In the substrate (n
s
)

 In the cladding(n
c
)

 In the guide (n
g
)

P
ow

er
 D

is
tr

ib
u

ti
on

 (%
)

Waveguide Thickness ( )
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for (a) the waveguide AlAsGa/AsGa/AlAsGa and (b) the
waveguide SiO2∕Si∕SiO2.
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with ngðAsGaÞ ¼ 3.44, nc;sðAlAsGaÞ ¼ 3.36 at λ ¼ 1.55 μm[18],
and the second waveguide is SiO2∕Si∕SiO2 with ngðSiÞ ¼
3.5 and nc;sðSiO2Þ ¼ 1.447 at λ ¼ 1.3 μm[24,25].
Figure 4 represents the power distribution of the third

mode in three regions of the waveguide with the wedge
angle a ¼ 1° ¼ 0.0174 rad.
Figure 5 illustrates the power distribution of the third

mode with the wedge angle a ¼ 5° ¼ 0.087 rad.
In Figs. 4 and 5, we assist with a gradual power transfer

from the tapered waveguide to the adjacent mediums. But
at thicknesses lower than the cut-off thickness of each
mode, we see a fast power transfer until a total optical
coupling.
We remark in Fig. 5 that for a larger wedge angle (5°),

the total power transfer occurs at lower waveguide thick-
nesses, compared to a smaller angle (1°), but in all cases,
there is power conservation in the three waveguide regions.
The results shown in Figs. 4 and 5 demonstrate the in-

terest and the power of the method introduced in this
Letter, and by applying it, one can efficiently follow the
behavior of the optical waves both inside and outside of
the optical waveguide.
In conclusion, the new model introduced in this Letter

permits for the prediction of the behavior of light waves as
they propagate throughout a nonuniform structure, and
thus allows for determining the electromagnetic field dis-
tribution in all media constituting the nonuniform optical
waveguide for different refractive indexes and different
wedge angles formed by the waveguide interfaces.
In addition to modelling the propagation and the radi-

ation of the electromagnetic field, the computation of the
modified intrinsic integral also allows for a systematic
evaluation of the optical coupling phenomena occurring
in an optical coupler. The new intrinsic model can be used
to modulate all types of nonuniform optical waveguides
that are constituted by any optical materials and any
wedge angles.
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