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We develop a regularization-based algorithm for reconstructing the C2
n profile using the profile of Fried’s trans-

verse coherent length (r0) of differential column image motion (DCIM) lidar. This algorithm consists of fitting
the set of measured data to a spline function and a two-stage inversion method based on regularized least squares
QR-factorization (LSQR) in combination with an adaptive selection method. The performance of this algorithm
is analyzed by a simulated profile generated from the HV5∕7 model and experimental DCIM lidar data. Both the
simulation and experiment support the presented approach. It is shown that the algorithm can be applied to
estimate a reliable C2

n profile from DCIM lidar.
OCIS codes: 010.1330, 100.3190, 010.3640, 010.1290.
doi: 10.3788/COL201715.020101.

Knowledge of the optical turbulence profile becomes a key
issue in wide-field adaptive optics (WFAO) systems[1,2],
free-space optical (FSO) communication[3,4], and laser
beam propagating through the atmosphere[5,6]. Several ap-
proaches have been proposed to measure the C2

n profile.
The commonly used methods are the radiosonde balloon
method[7], SCIDAR (scintillation detection and ranging)[8],
SLODAR (slope detection and ranging)[9], MASS (multi-
ple aperture scintillation sensor)[10], and lidar methods in-
cluding differential image motion (DIM)[11] and differential
column image motion (DCIM)[12,13]. Compared with other
methods, lidar can measure the turbulence profile in
different paths (i.e., horizontal path and slant path) based
on active light detection, which makes it enjoy better
application prospects.
DCIM lidar[12] is a recent atmospheric turbulence mon-

itor for sensing real-time vertical profiles of Fried’s trans-
verse coherent length (r0). DCIM lidar is capable of
obtaining the r0 values of different altitudes simultane-
ously via imaging the differential column onto a CCD,
which is superior to DIM lidar time-sharing measurement
of the atmospheric coherent length at different altitudes.
However, DCIM lidar aims to extract the real-time verti-
cal distribution of the atmosphere refractive structure
constant C2

n from r0 profiles, which involves an inverse
problem analogous to DIM lidar. In DIM lidar, slope in-
version based on the first derivative has been proposed
to avoid a nonphysical solution[14], but the first derivative
may be more sensitive to measurement noise and this al-
gorithm does not perform well currently in free atmos-
phere. Although C2

n profiles based on the generalized
Hufnagel–Valley model have been restored from DCIM
Lidar, the retrieval method is limited by the a prior
turbulence model without universality[15]. Consequently,

it is of particular importance to develop a more efficient,
trustworthy, and generalized inversion algorithm used for
DCIM lidar.

In this Letter, an algorithm using a regularization
technique to restore the C2

n profile from DCIM lidar is re-
ported. The algorithm allows accurate and rapid conver-
gence based on a two-stage reconstruction method that
enhances immunity to the presence of noise and does
not require an initial estimation of the C2

n profile. The first
stage uses a regularized least squares QR-factorization
(LSQR) method to retrieve the general shape of the C2

n

profile. The second stage is related to an adaptive selecting
algorithm to get the stable solution of the final C2

n profile.
Theoretical analysis, computer simulations, and experi-
ments will be presented to illustrate the efficiency of this
algorithm.

The relationship between the measured r0 from DCIM
lidar and C2

n can be written as

r0ðHÞ ¼
�
0.423k2

Z
H

0
C2

nðhÞð1− h∕H Þ5∕3dh
�
−3∕5

; (1)

where r0, k, H , and C2
n are Fried’s transverse coherence

length, wavenumber, the beacon altitude, and the refrac-
tive structure constant, respectively.

For each experimental point Hj (j ¼ 1;…;M , M is the
number of experimental data points), Eq. (1) can be
written as

r0ðHjÞ−5∕3 ¼ 0.423k2
X
i<M

C2
nðhiÞð1− hi∕HjÞ5∕3Δhi : (2)

Equation (2) can be converted into a typical Fredholm
integral equation of the first kind. The linearity of the
direct problem can be described by
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y ¼ Ax þ ε; (3)

where y is the measured DCIM lidar data of sizeM × 1, A
is an M × N lower triangular matrix, x is an N × 1 vector
representing the C2

n profile to be determined, and ε
denotes the measurement noise.
The discretized Fredholm equation is severely ill

posed[16], even an extremely small amount of noise ε can give
rise to significant errors in the estimate of x. Moreover, the
integral kernel ð1− h∕H Þ5∕3 of Eq. (1) is almost equal to 0
when h is close to H , enhancing the ill-conditioning of A.
Therefore, the standard matrix methods cannot be used
in a straightforward manner to compute a meaningful
solution.
Regularization is the most frequently used method to

solve the ill-posed and ill-conditioned problem. The cost
function minimized by the regularization technique using
a Tikhonov method can be expressed as[17]

min
x∈Rn

ð‖y − Ax‖22 þ λ‖Lx‖22Þ; (4)

where L is the regularization matrix, and the regulariza-
tion parameter λ should be chosen carefully to balance the
error due to measurement noise and regularization. In our
work, L is chosen as the first discrete derivative operator
rather than the identity to limit rough oscillations due
to noise.
In this Letter, as A is a lower triangular matrix and

ill-conditioned, we develop a two-stage reconstruction
method. The first stage of the reconstruction is conducted
by an iterative regularization method based on the
LSQR[18,19] method. The method is suitable for calculating
sparse matrices’ usage of the Lanczos bidiagonalization
process. Furthermore, LSQR is a more rapid and efficient
method performing the regularization effect, where the
iteration number is an equivalent of the regularization
parameter λ. A reasonable choice for the convergence con-
dition is the optimal iteration number, which can be deter-
minedby theL-curve criterion[20]. In terms of our solution, it
is found that 20–30 iterations are sufficient to converge
using the L-curve criterion.
However, the first-stage retrieval will contain unwanted

fluctuations induced by the noise in the DCIM data.
Therefore, it is necessary to implement the second stage
to smooth out the artificial oscillations.
In the second stage, an adaptive selecting algorithm is

proposed to remove the large oscillations. As the restored
profiles from the LSQR algorithm can acquire the global
feature of the theoretical profile with repeatable oscilla-
tions, the peaks and valleys of the oscillations are then
used to analyze the suitable inversion value. The adaptive
selecting algorithm consists of the following four steps:
(1) detect all the peaks and valleys in the retrieved profile;
(2) revise the unreasonable peaks and valleys according to
adjoining peaks and valleys; (3) calculate the correspond-
ing median Cmed ¼ ðCpeak þ CvalleyÞ∕2; (4) select the
retrieved value close to median as the final output.

Spatial resolution is a concern involved in the
reconstruction of turbulence profile. The spatial resolution
in our method is determined by the two stage retrieval. In
the first-stage retrieval, the spatial resolution of the tur-
bulence measurements can be designed reasonably accord-
ing to variation characteristics of r0 and atmospheric
subdivision. However, after the second-stage procedure,
the spatial resolution does not remain constant in the
corresponding layer since the larger oscillations of C2

n

are filtered adaptively. Nevertheless, the variable spatial
resolution does not affect the whole turbulence
distribution.

Prior to the reconstruction, the measured r0 data need
to be fitted by an appropriate spline function in consider-
ation of two principle reasons. First, the random noise
may easily lead to r0 values larger at high altitudes than
those at low altitudes since the optical turbulence of the
ground layer makes a significant contribution to r0. As a
result, negative values of C 2

n will be produced. Second, the
spline function enables us to use arbitrary data in the
spline curve, thereby enlarging the range of the measured
data used to carry out the inversion. However, we do not
employ the r0 values at an altitude higher than 15 km.
(i) The max detected altitude value of the lidar is between
12 and 15 km, depending on our present transmitted en-
ergy of the laser and signal-to-noise ratio. (ii) The varia-
tion of r0 is very little at the altitudes above 15 km; a small
quantity perturbation of r0 may result in a huge error of
C2

n. A slightly modified spline function of DIM[14] after
some trials is exploited to fit r0 values of DCIM

r0 ¼ ða1h∕ðh þ b1Þ þ a2h∕ðh þ b2ÞÞ−3∕5; (5)

where the unit of r0 is centimeters. In order to avoid local
minima, the four fitting parameters a1, b1, a2, b2 are
determined by a genetic algorithm.

Simulation is performed to test the accuracy of the recov-
ery of the profile generated from the HV5∕7 model. The
HV5∕7 model represents a typical turbulence strength dis-
tribution in altitude of midlatitude meteorology to which
the DCIM lidar is now mainly applied. We first use the
HV5∕7 model to compute the true r0 at different altitudes
consistent with the measurement data from the DCIM
lidar. Random Gaussian noise with a zero mean and 5%
variance is added to the true r0 as a measurement error.
These noisy r0 values are then analyzedwith the algorithm.

Note that spline curve can smooth noise very well,
although it cannot eliminate noise absolutely, which will
lead to the smoothed data being higher or lower than the
real data. Therefore, in order to illustrate the effectiveness
of the retrieval method, two typical simulation cases will
be discussed when the random noise is added to the mea-
surement data: (1) a majority of the fitted data are smaller
than the theoretical data; (2) a majority of the fitted data
are larger than the theoretical data. The simulated results
are given in Figs. 1 and 2, respectively.

A typical noisy r0 profile, along with the theoretical r0
data and smoothed curve, are presented in Fig. 1(a). From
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Fig. 1(a), we can see that the simulated data are randomly
distributed by 5% Gaussian noise. For the current detec-
tion altitude range of 0.8–12.8 km, the smoothed curve is
mostly lower than the theoretical one. The restored profile
from the noisy data after fitting are shown in Fig. 1(b),
noting that the first stage of the reconstruction is able
to perserve the bump feature and the whole tendency of
the real profile against the error. However, the oscillations
in the C2

n profile frequently occur with the standard LSQR
algorithm. Fortunately, the second stage algorithm can
well smooth out the larger fluctuations of the C2

n profile
derived from the first stage in which the relative error be-
tween the input and recovered lgC2

n profile is within 2%.
The simulation process of Fig. 2 is similar to Fig. 1, how-

ever, there is a large difference in the input observable
quantity. In Fig. 2(a), most of the simulated noise data

are higher than the theoretical data. Moreover, the input
r0 high-altitude values have a larger error than those of
Fig. 1(a). In this case, the restored profile using the two-
stage algorithm still achieves reasonable values despite
some slightly larger fluctuations than those in the first
simulated case in the high-altitude turbulence.

However, each simulated case is different since the noise
is added randomly. The simulation results described above
are only two typical cases of simulation samples.

To provide a further illustration of the efficiency of the
method, the procedure was conducted in 30 successive
cases to compute the mean restoration and root-mean-
square error (RMSE) for error analysis. It takes approx-
imately 2.5 s to deduce the final C2

n profile for each run.
The RMSE represents the residual between the restored
and true profile defined as

RMSEðhjÞ¼
�
1
N

XN
i¼1

ðC2
nrestored

ðhijÞ−C 2
ntrue

ðhijÞÞ2
�1∕2

: (6)

In Fig. 3, we see that the two-stage algorithm permits a
good reconstruction at low and high altitudes with smaller
oscillations. The RMSEs errors decrease smoothly in the
0–1 km altitude range. For all levels above 1 km, the RMS
errors are randomly distributed and less than 10−16.

The signal-to-noise ratio (SNR) is presented in Fig. 4 to
evaluate the effectiveness of the proposed method. The
SNR equation used can be described as

SNRðhjÞ ¼ 10 lgðPs∕PnÞ

¼ 10 lg
�X

i

ðlg C2
ntrue

ðhijÞÞ2∕
X
i

ðlg C2
nrestored

ðhijÞ

− lg C2
ntrue

ðhijÞÞ2
�
; (7)

where Ps is the signal power and Pn is the noise power.
The true lgC2

n is taken as the pure signal without noise
and the restored lgC2

n is taken as noisy signal. As the
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Fig. 1. Results of spline curve fitting and two-stage retrieval of a
C2

n profile for simulated noisy r0 values mostly lower than the
theoretical data: (a) spline curve fitting with 5% Gaussian noise;
(b),(c) the first and second stage of the retrieval, (d) relative
error of lgC2

n on the inversion.
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Fig. 2. Results of spline curve fitting and two-stage retrieval of a
C2

n profile for simulated noisy r0 values mostly higher than the
theoretical data: (a) spline curve fitting with 5% Gaussian noise;
(b),(c) the first and second stage of the retrieval, (d) relative
error of lgC2

n on the inversion.
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Fig. 3. C2
n profile retrieval with the error bars and corresponding

RMSEs based on the 30 profiles in the simulation set. The red
line represents the average retrieval values of the 30 profiles.
The blue line (error bars) is the standard deviation of the 30
profiles.
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C2
n measurements in the real experiments have probably

1–2 orders of deviation from the true values, to avoid the
negative SNR, we use lgC2

n rather than C 2
n.

FromFig. 4, we see that the range of the SNR is 32–48 dB
with a random distribution for different detection alti-
tudes. The SNR is higher in the near surface atmospheric
boundary layer and lower at the isolated layer (5–7km) and
near the tropopause (13–15 km).
To demonstrate the validity of this inversion technique

experimentally, the DCIM lidar instrument was installed
in Hefei on November 9–12, 2015. The transmitter system
was developed around an Nd:YAG laser with a 550 nm
wavelength. A Cassegrain telescope of 3.7 m focal length
was adopted as a receiver whose baseline separation from
the transmitter is 4 m. The pupil mask with two 0.12 m
diameter subapertures separated by 0.235 m (center to
center) was placed at the entrance pupil of the telescope.
The CCD of 24 μm× 24 μm pixel size is projected onto
the pupil plane. A set of 1000 image frames are acquired
to calculate one r0 profile. In our present temporal sam-
pling method, one r0 profile can be obtained every 20 s,
and the single operation time of the inversion algorithm
is 2.5 s. Therefore, the final temporal resolution of the tur-
bulence measurements is 22.5 s.
The r0 profiles measured with the DCIM lidar for three

typical time periods are given in Fig. 5. Three r0 profiles
represent weak, moderate, and strong turbulence condi-
tions, respectively. It is noted that the r0 profile varies lit-
tle with stronger turbulence. The presented subfigure is to
illustrate the random fluctuation of atmospheric turbu-
lence since it is not obvious in the original figure. The fit-
ted spline curve can smooth the random perturbations
effectively in different turbulence conditions, preserving
the whole tendency of the original profiles.
A comparison between the C2

n profiles from the DCIM
lidar and a radio-sounding balloon is shown in Fig. 6. Each
individual profile is determined from the DCIM lidar with
an update rate of 22.5 s. The radio-sounding balloon re-
quires 2 h to measure the C2

n value from the ground level
up to 30 km. The balloon profile shown only contains C2

n

values between the ground and 15 km for the purpose of

comparison with the DCIM lidar profiles. Despite the fact
that the two instruments, DCIM lidar and radio-sounding
balloon, use completely different principles (image motion
and temperature fluctuation, respectively), their results
coincide with each other in different turbulence condi-
tions. In Fig. 6(a), the two C2

n measurements decrease
with random fluctuations, which appear as larger fluctua-
tions between the ground and 4 km as well as 6 and 15 km.
Both instruments detect two main turbulence layers, as
shown in Fig. 6(b). The weaker turbulence layer is found
at approximately 2 km, and a stronger turbulence layer is
detected at approximately 8 km. In Fig. 6(c), both the
profiles indicate the weakest turbulence at 4 km and a
small bump at approximately 10 km. The simultaneous
measurements also indicate that the atmospheric optical
turbulence near the ground has significant changes with
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Fig. 4. SNR curve based on the 30 profiles in the simulation set.
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Fig. 6. Comparison of C2
n profiles using the DCIM lidar and

radio-sounding balloons at three typical time periods corre-
sponding to Fig. 5.
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time that may be due to the complicated change features
of the underlying surface, but the high-altitude turbulence
is relatively stable. The results of the two instruments are
in reasonably good agreement, considering that the instru-
ments measured C2

n at slightly different times and places.
Therefore, the effectiveness of the retrieval method is
confirmed experimentally.
In order to further quantify the comparisons, using the

radio-sounding balloon measurements as reference, Figs. 7
and 8 show the relative errors and the SNR of the DCIM
lidar. In Fig. 7, the relative errors are within 11% at three
typical time periods. For altitudes above 3 km, the relative
errors are less than 4%. Different temporal resolutions of
the two instruments and the rapid change of the underly-
ing surface lead to larger errors near the ground. For Fig. 8,
the SNR is mainly distributed in the 10–35 dB range. The
higher values of SNR mean a better agreement of the two
instruments. It is noted that the results of Figs. 7 and 8
only indicate the comparisons between DCIM lidar and
radio-sounding balloons, which do not demonstrate the
actual error analysis compared with the true values be-
cause the balloon measurements also contain experimental

errors. However, more efficient experiment comparisons
near the ground should be worked on in future.

In conclusion, we present an algorithm that combines
spline function smoothing and a two-stage retrieval
method for retrieving the C2

n profile from the ground level
up to 15 km with DCIM lidar. The algorithm does not
require a prior information of the C2

n profile and can be
computed very quickly. Furthermore, the algorithm can
estimate nonlinear spatiotemporal variation features of
atmospheric turbulence effectively. The validity of the al-
gorithm is formally verified by both simulation and experi-
ments. The results show that the technique can recover a
reliable C2

n profile in the presence of noise. The algorithm
can also be applied to DIM lidar and other applications
using the profile of r0 or the variance of angle-of-arrival
fluctuations to estimate the C 2

n profile. Future investiga-
tions are needed to reduce the noise contributions of r0
profiles to improve the retrieval precision and quantify
the spatial resolution of the C2

n profile.
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Natural Science Foundation of China under Grant
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