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Single-pixel cameras, which employ either structured illumination or image modulation and compressive sensing
algorithms, provide an alternative approach to imaging in scenarios where the use of a detector array is restricted
or difficult because of cost or technological constraints. In this work, we present a robust imaging method based
on compressive imaging that sets two thresholds to select the measurement data for image reconstruction.
The experimental and numerical simulation results show that the proposed double-threshold compressive
imaging protocol provides better image quality than previous compressive imaging schemes. Faster imaging
speeds can be attained using this scheme because it requires less data storage space and computing time. Thus,
this denoising method offers a very effective approach to promote the implementation of compressive imaging in
real-time practical applications.
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Classical image formation is most commonly realized by
creating an image of a scene onto a detector array. In sce-
narios where using a detector array is restricted or difficult
because of cost or technological constraints, alternative
imaging approaches are required. In several imaging devi-
ces, scanning methods serve as the method of choice,
although these methods have the disadvantage of the
acquisition times being linearly proportional to the spatial
resolution. Compressive imaging (CI)[1] provides the prom-
ising option of using a single-pixel detector to facilitate the
structured detection of an image or the structured illumi-
nation onto a scene to deduce an image. CI also has the
advantage of under-sampling. In compressive sensing
(CS)[2,3], which relies on the empirical observation that
many types of signals or images are sparse in the
appropriate basis, an image can be recovered from fewer
measurements than those required according to the
Nyquist–Shannon criterion. Because CI has the advan-
tages of compressive detection and a simple experimental
configuration, it has attracted wide attention in many
fields, such as infrared imaging[4,5], three-dimensional
(3D) imaging[6–9], fluorescence microscopy[10,11], spectro-
scopic imaging[12,13], super-resolution domain imaging[14–17],
and terahertz (THz) imaging[18].
When using the CI approach, it is essential to maintain

the high quality of the reconstructed images. Generally, to
implement a CI system, a series of 0/1 binary transmission
masks realized by a digital micromirror device (DMD) are
applied to carry out light intensity modulation. However,
the binary 0/1 matrix is not the best choice for CI because
it does not satisfy the restricted isometry property condi-
tion, which plays a major role in ensuring CS robustness.

To address this problem, the −1∕1 binary matrix with a
zero mean is employed in CI[19–21]. Because only non-
negative matrices can be physically displayed by the
DMD, the −1∕1 binary matrix is realized by displaying
a 0/1 pattern immediately followed by its inverse or by
detecting the light reflected in both the directions of
the DMD. Alternative approaches for increasing the sig-
nal-to-noise ratio (SNR) of a reconstructed image are
the use of Hadamard matrices[22] or the use of sinusoidal
patterns to retrieve its Fourier spectrum[23]. The CI system
is very similar to computational ghost imaging[24–26], which
also uses the knowledge of structured illumination pat-
terns and single-pixel detector signals to reduce an image.
In ghost imaging, some threshold strategies[27–30] have
been proposed to offer a better SNR and improved visibil-
ity by computing certain patterns selected by the
thresholds.

In our previous work[31], a threshold configuration was
employed to improve the image quality in CI. In this
Letter, we present an approach that utilizes two thresh-
olds to reduce the noise in CI. We select low-noise, large-
fluctuation signals for the calculation based on this
approach. We show that by using this method image qual-
ity can be effectively improved, while saving both compu-
tational time and storage space. This threshold algorithm
does not require any modification to the existing experi-
mental apparatus. The experimental results indicate that
this threshold strategy can provide better image quality
and a higher SNR than previous complementary CI
schemes. Because of these advantages, the proposed
double-threshold method is expected to be useful in real-time
practical applications.
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We use an n-dimensional vector OðxÞ to denote the
object. Suppose that there exists a transform matrix Ψ
to the sparse basis, such that OðxÞ ¼ Ψ·O0ðx 0Þ, where
O0ðx 0Þ is sparse. Generally, many natural signals, such
as images, are sparse in the appropriate basis. In CS, an
m × n matrix A is used to describe the measuring device
m < n, and the measurement process can be formulated as

y ¼ AΨO0ðx 0Þ þ e; (1)

where y is an m-dimensional observation vector, and e is
the noise. In this study, the complementary measurement
method is adopted[19–21]. Thus, A is a −1∕1 binary matrix
with a zero mean. As mentioned above, during the imple-
mentation, the−1∕1 binarymatrix is realized by displaying
a 0/1 binary matrix followed by its inverse, and two inten-
sity signals Sþ

j and S−
j are obtained. The element in

the observation vector y is obtained from the difference
between these two intensity signals:

yj ¼ Sþ
j − S−

j : (2)

Because m < n, the observation vector y does not
specify a unique OðxÞ. In CS, the following optimization
problem is solved to reconstruct the object information:

Ô0ðx 0Þ ¼ argmin
n
jjA·Ψ·O0ðx 0Þ− yjj22

− τjjO0ðx 0Þjj1
o
;

ÔðxÞ ¼ Ψ·Ô0ðx 0Þ; (3)

where ÔðxÞ is the reconstructed image, and τ is a constant
scalar, weighing the relative strength of the two terms.
We employ a threshold T1 to select the measurements,

yT1
¼ fjyj > T1g: (4)

The values in y represent the comparability of the
object and the random binary patterns. The larger the
value of jyj, the greater the degree of correlation is between
the object and the random binary pattern[30].
The sum of the two intensity signals of the complemen-

tary binary patterns

Sj ¼ Sþ
j þ S−

j ; (5)

should be a constant in the absence of noise. We employ
another threshold T2 to select the measurements:

fyT2
jjSj − S̄ j < T2g; (6)

where S̄ ¼ ð1∕mÞPm
j¼1 Sj is the mean of the sum of the

two intensity signals.
The double thresholds are utilized jointly in this work.

yT is the intersection between yT1
and yT2

;

yT ¼ fjyj > T1g; fyT jjSj − S̄ j < T2g: (7)

The measurement vector after reduction is used to
reconstruct the object. Accordingly, the rows in matrix
A are reduced, and At is the matrix after reduction.The
values of these double thresholds will be discussed later.

A schematic diagram of the experimental apparatus is
shown in Fig. 1(a). A stabilized tungsten-halogen light
source (SLS201, Thorlabs Inc.), combined with a colli-
mated lens, is used to illuminate the object, which is
the Group 2, Element 3 portion of the standard U.S.
Air Force resolution target. A narrow-band filter of
640 nm with a full width at half-maximum of 10 nm
is positioned behind the object. The object is imaged
onto the DMD using an achromatic imaging lens
(Φ ¼ 25.4 mm, f ¼ 50.4 mm). The DMD consists of a
1024 × 768 array of independently configurable mirrors,
and the size of each mirror is 13.68 μm× 13.68 μm. Each
mirror can be shifted between two positions oriented at
þ12° (1) or −12° (0) with respect to the surface of
the DMD. The light reflected by the micromirrors
oriented atþ12° is focused onto a CCD (1620M, IMPERX
Inc.) by a collection lens (Φ ¼ 25.4 mm, f ¼ 30 mm). In
this experiment, the CCD plays the role of bucket detec-
tors, which measure only the total intensity. Compared
to the single-pixel detector, the CCD has a lower noise
because numbers of the readout are summed together,
and it operates at a much slower rate (<50 Hz). Therefore,
by using a CCD functioning as a single-pixel detector, the
two thresholds scheme will perform better due to a smaller
amplitude of noise, and consequently, the reconstructed
image of the system will, in general, have better quality
than those used an actual single-pixel detector. Random
−1∕1 binary patterns with a size of 64 × 64 pixels are
encoded on the DMD by displaying a random 0/1 pattern
and immediately succeeding it by its inverse.

When a 0/1 pattern is shown on the DMD, we sum all
intensities recorded from the CCD pixels to obtain Sþ

j ,
and, when the 0/1 pattern’s inverse is shown on the
DMD, we sum all of the intensities recorded from the
CCD pixels to obtain S−

j . The difference between the in-
tensity signals that are recorded for each 0/1 pattern and

Fig. 1. (a) Schematic of CI. (b) Result reconstructed from the
entire 3600 measurements. L represents lens.
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its inverse (Sþ
j and S−

j , respectively) is utilized to produce
a differential signal yj ¼ Sþ

j − S−
j , where j is the pattern

number. A sequence of 3600 random−1∕1 binary patterns
is used in this experiment, and the sampling frequency is
20 Hz, which is limited by the frame rate of the CCD.
The intensity signals Sþ

j and S−
j and random −1∕1

binary patterns are utilized to reconstruct the image.
To reconstruct the images, total variation minimization
by augmented Lagrangian and alternating direction algo-
rithms (TVAL3)[32] and the sparsity of the object gradient
are utilized in this experiment. The image size is 64 × 64
pixels, and the result reconstructed from the entire 3600
measurements is shown in Fig. 1(b). Two thresholds T1

and T2 are set to reject some measurements. T1 is em-
ployed to select the intensity measurements recorded by
the bucket detector with the largest absolute values,
and yT1

is used to represent the measurements selected
by the threshold T1. The distribution of the jyj and the
threshold T1 is shown in Fig. 2. The measurements
slightly influenced by the environmental noise are selected
according to T2, and represented as yT 2

. yT is the inter-
section between yT1

and yT2
. The groups of measurements

determined by different thresholds and the corresponding
binary patterns are used to recover the images. The values
of the thresholds used will be discussed later. The results
obtained by different groups of measurements are shown
in Figs. 3(a)–3(f). The number of yT1

and that of its com-
plement are close, while the quality of Fig. 3(a) is consid-
erably better than that of Fig. 3(b). The images recovered
from yT2

[Fig. 3(c)] and its complement [Fig. 3(d)] also
show contrast. The image retrieved by yT gives the best
performance but with the least number of measurements.
Compared to the background in Fig. 1(b), that in Fig. 3(e)
is smoother, and the salt and pepper noise in the image
have been effectively eliminated. The number of measure-
ments required for the calculation is reduced massively by
the use of these double thresholds, which is very helpful in
saving computational time and storage space.

A simulation experiment is performed to quantitatively
evaluate our method. An object “CI”with a size of 64 × 64
pixels and a continuously varying gray scale is employed
in this experiment, as shown in Fig. 4(a). The number of
random−1∕1 binary patterns is 2 × 103. The mean square
error (MSE) is calculated to quantitatively characterize
the reconstructed images compared to the object. The
MSE is defined as

MSE ¼ 1
n

Xn
i¼1

½ÔðxiÞ−OðxiÞ�2; (8)

where n is the number of pixels, and i is the indices of
the pixels. Naturally, the smaller the value of the MSE,
the higher the quality of the recovered image is. White
Gaussian noise is randomly superimposed on the intensity
signals Sþ

j and S−
j to give an SNR of SNRsignal ¼ 24 dB,

where

Fig. 2. Distribution of the jyj and the threshold T1.

Fig. 3. Results obtained with different thresholds. (a) Image recon-
structed from 1757 measurements selected by yT1

, and (b) image
reconstructed from the remaining 1843 measurements. (c) Image
reconstructed from 1742measurements selected by yT2

, and (d) im-
age reconstructed from remaining 1858 measurements. (e) Image
reconstructed from 954measurements selected by yT , and (f) image
reconstructed from remaining 2646 measurements.

Fig. 4. (a) Object. (b) Image reconstructed from entire measure-
ments. (c) Image reconstructed with yT . (d) Image reconstructed
with yT1

. (e) Image reconstructed with yT2
.
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SNRsignal ¼ 20 log
�
σðsignalÞ
σðnoiseÞ

�
; (9)

in which σ is the standard deviation. The image recon-
structed from the entire 2 × 103 measurements is
shown in Fig. 4(b); this image has an MSE of 19.45.
The images reconstructed with yT , yT1

, and yT2
are

shown in Figs. 4(c)–4(e), respectively. The use of the
threshold strategy provides the advantages of obtaining
a better MSE and reducing the number of measurements
involved in the calculation. The best qualitative image
with an MSE of 2.56 is obtained by using the calculated
measurements selected by the double-threshold strat-
egy, where the number of measurements required is less
than10% of the number of pixels in the object.
The quality of the reconstructed image is significantly

affected by the values of the thresholds. A numerical
simulation has been performed to show the relationship
between the MSE and the values of the thresholds
T1 and T2. The object is the same as the one shown in
Fig. 4(a). The total number of measurements is 4 × 103.
TheMSEs of the images recovered from the measurements
for different thresholds are calculated. The variation in the
reciprocal of the MSE, according to the thresholds T1 and
T2, is shown in Fig. 5(a). To provide a more distinct illus-
tration, Fig. 5(b) shows the 3D intensity profile of the same
image presented in Fig. 4(a). As T1 increases and T2 de-
creases, the number of measurements involved in the calcu-
lation reduces, and the quality of the recovered image
improves to reach a peak after a slight deterioration. This
threshold strategy is effective when a certain number of
measurements are omitted. The MSE becomes minimum
when T1 ¼ 0.23max jyj, and T2 ¼ 0.25max jSj − S̄ j,
and these two threshold values are adopted in the experi-
ments described previously in this Letter. After reaching
the peak, the reciprocal of the MSE reduces sharply. The
above results indicate that omitting some measurements
by setting double thresholds can enhance the image quality
in CI, and the two thresholds can be determined by simu-
lation and experimental analyses. A variety of images have
been tested in the simulation experiments to determine
the best values of the double thresholds. The results show
that the image quality will be distinctly improved in the
intervals 0.12max jyj < T1 < 0.3max jyj, and 0.15max
jSj − S̄ j < T2 < 0.5max jSj − S̄ j, while the position of

the minimum MSE varies with different images. For the
future, we will continue to theoretically and experimentally
investigate the relationships between the best thresholds
and the transmission ratio of the object, the statistical
distributions of Sþ

j and S−
j and the total number of

measurements.
In conclusion, we present an approach that utilizes

two thresholds to achieve a better MSE in CI. We select
low-noise, large-fluctuation signals for the calculation.
We show that by using this method image quality can
be effectively improved, while saving both computational
time and storage space. This threshold algorithm does not
require any modifications to the existing experimental
apparatus, and, therefore, the algorithm can be applied
to various CI configurations. Because of these advantages,
this double-threshold method is expected to be useful in
practical applications.
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