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The use of a computer-generated hologram (CGH) in interferometric testing provides new methods for highly
accurate optical measurement. To fabricate a CGH, polygons are used to approximate the smooth CGH pattern.
Because the data size supported by CGH writing machines is limited, the number of polygon vertices must be
limited. Therefore, the CGH-encoding method determines the encoding accuracy. To realize a highly accurate
optical measurement using CGHs, we propose a CGH-pattern-encoding method based on non-maxima suppres-
sion. A self-aligned CGH is designed to verify the accuracy. The experimental result shows that a highly accurate
CGH can be fabricated using this method.
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A computer-generated hologram (CGH) can generate any
desired wave-front phase with diffractive light, which
provides new methods for solving the problems of highly
accurate optical measurement, especially in measuring
complex optical surfaces[1,2]. In recent years, CGH has
proven its capability through a series of verifications
and applications[3,4].
The procedure of making a CGH includes optical design,

encoding, and fabrication. The optical design can be com-
pleted using commercial optical software, and the fabrica-
tion can be completed using microelectronic technology,
such as e-beam writing or laser direct writing. The encod-
ing process can only be done by the CGH designer alone
because no general method of CGH encoding is available.
Most CGH studies focused on the optical design and fab-
rication and seldom introduced the encoding method.
The CGH-encoding process converts the desired wave-

front phase function into encoded data. The format of the
encoded data should be acceptable by the e-beam writing
or laser direct writing machines, such as GDSII, the
Caltech Intermediate Format (CIF), and the drawing
exchange format (DXF)[5]. Because the writing machines
locate discrete coordinate points only, the encoded data
consist of polygon vertices that approximate smooth
CGH fringes. To achieve higher encoding accuracy, more
polygon vertices are usually desired to approximate a
smooth CGH fringe, which means high density sampling,
and that leads to a huge encoding data size[6,7]. The huge
data size will not only burden the memory of the writing
machine, but also take a long writing time. Therefore, to
achieve high encoding accuracy with restricted data size, a
proper method should be adopted while encoding the
CGH pattern[8,9].

To reduce the encoding data size while obtaining high
encoding accuracy, a general encoding method of applying
non-maxima suppression into the process of encoding
smooth CGH fringes is introduced in this Letter. In addi-
tion, the error estimate of the method is presented. On the
basis of the estimation, a self-aligned CGH is designed and
fabricated to verify the accuracy of the encoding method.
The experimental result is given at the end of this Letter.

After the optical design, the function of the wave-front
phase generated by the CGH is expressed as ΔφCGHðx; yÞ.
The function ΔφCGHðx; yÞ will be encoded as a process, as
shown in Fig. 1. First, a series of smooth binary fringes
are generated using the phase contour interferogram
method[10], as shown in Fig. 1(a). Each contour represents
wave-front phase change mπ, where m is the designed dif-
fractive order. Second, the smooth fringes are encoded into
polygons that consist of segments, thus, the CGH can be
fabricated by the writing machine. Figure 1(b) shows the

Fig. 1. CGH-encoding process. (a) Generating binary fringes us-
ing phase contour interferograms. (b) Encoding the fringes into
polygons.
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CGH pattern after encoding. Discrete polygon vertices are
used to recode the pattern. In this study, we focus on the
second step.
The CGH-encoding process inevitably introduces error

to the wave-front, because any deviation from the ideal
fringes leads to a wave-front phase error[11]. Figure 2 shows
the process of using a polygon to approximate an ideal
smooth curve. The value of encoding deviation δ varies
along the curve.
The wave-front phase error generated by the deviation

is expressed as[12]

ΔW ¼ −
m·δ·λ

S
; (1)

wherem is the diffractive order, λ is the wavelength, and S
is the local fringe spacing.
Obviously, encoding using shorter segments could re-

duce the encoding error. In this case, more segments are
needed, and the number of vertices grows. To encode
smooth CGH fringes with fewer vertices while minimizing
the encoding error, the vertices of the segments should be
determined according to the local curvature of the fringes,
which means that the density of polygon vertices should
change along the curve according to the curvature. There-
fore, we propose to approximate a smooth fringe with a
series of dominant points. These dominant points can rig-
orously represent the change of the fringe because they are
the points with high local curvature. To detect these dom-
inant points, the non-maxima suppression process based
on graphic processing technology is applied in our study.
The strategy below is adopted to complete the encoding
process:
Step 1. Obtain the functions of the smooth CGH fringe
curves, which consist of the desired CGH pattern.
Step 2. Digitalize the smooth CGH fringe curves into dig-
ital curves with high density sampling. The digitalization
process should achieve a high accuracy, thus, the sampling
step length should as be small as possible. Store the digital
curves as temporary data.
Step 3. Apply the non-maxima suppression process to
the digital curve to detect the dominant points. In this
process, eliminate the points whose curvature estimates
are not local maxima in a segment of the digital curve.
The remaining points are the dominant points. Steps
2–3 are shown in Fig. 3. Many algorithms that originate
from computer science for the graphic processing tech-
nique are available, which could be used to screen out
the extrema. We choose the Teh–Chin algorithm[13] in this
study.

Step 4. Recode the coordinates of the dominant points
in a standard exchange data format. In this study, the
format of CIF is adopted.

As mentioned earlier, any process of encoding smooth
fringes (or curves) inevitably introduces deviation. Ac-
cording to Eq. (1), any deviation can cause a wave-front
error. This section provides the error estimation of our
method. Figure 4 shows the digitalization of a smooth
curve. Every cell in the grid is a sampling unit in the
X–Y coordinate system, and the sampling step is desig-
nated as l.

Deviation occurs, whereas the curve does not change
along the grid. We use δsample to represent the value of
the deviation introduced by digitalization, and δsample

varies within the limit,

δsample <
���

2
p

l∕2: (2)

To reduce the amount of deviation, the value of sam-
pling step l should be as small as possible.

We define the deviation introduced by the non-maxima
suppression process as suppression error δsuppress. The
amount of the deviation is the Euclidean distance between
the digital curve and the corresponding segment of the
polygon.

Fig. 2. Deviations introduced by encoding.

Fig. 3. Digitalization and non-maxima suppression processes.

Fig. 4. Deviation induced by digitalizing the curve.
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As it shows in Fig. 5, Lp ¼ fpi ; piþ1;…; pj−1; pjg is a
digital curve consisting of a series of sampling points.
We apply the non-maxima suppression to Lp and obtain
dominant points Dp ¼ fpi ; pjg. The distance of the sam-
pling point to segment pipj is the suppression error
δsuppress of the sampling points. The algorithm adopted
to screen out the dominant point determines the value
of the suppression error δsuppress. To verify the accuracy
of the non-maxima suppression, digital curve L1 with vari-
ous curvatures (sine curve) is chosen, and the result of the
non-maxima suppression is shown in Fig. 6. The Teh–
Chin algorithm is adopted to screen out dominant points.
Suppression error δsuppress induced by this algorithm is
smaller than sampling step l [13]:

δsuppress < l: (3)

The number of points on L1 is 3286, and the number of
red circles, which corresponds to the detected dominant
points, is 436. The data size is prominently reduced.
The density of the dominant points varies according to
the value of the local curvature.
We obtain δsuppress of every point on L1, as shown

in Fig. 7.
The horizontal axis represents the different ranges of

suppression errors, whose unit is sampling step l. The ver-
tical axis represents the number of points. Obviously, all
suppression errors are smaller than l, and the value of the
root mean square (RMS) suppression error is expressed as

RMSðδsuppressÞ ≈ 0.439l: (4)

The sine digital curve has a typical variation in the cur-
vature; the error estimation result of this example can
verify the accuracy of the non-maxima suppression proc-
ess. We estimate the maximum encoding error of our
method. Steps 2 and 3 are two independent steps; add
the maximum error of the steps and obtain the estimated
maximum encoding error of our method by combining
Eqs. (2) and (3), which is expressed as

δencoding < ð1þ
���

2
p

∕2Þl: (5)

According to Eq. (5), the high accuracy of the encoding
process can be achieved as long as l is sufficiently small.

To verify the accuracy of the method, the interference
should be suppressed. The more optical elements that are
used in the measurement, the more there will be labile fac-
tors. Therefore, a type of self-aligned CGH is chosen for
the experiment. Figure 8 shows the layout of the test
system.

We optimize the wave-front phase function using the
parameters of the surface-type Zernike fringe phase in
ZEMAX. A higher diffractive order brings wider fringe
spacing, which means that the writing machine can more
easily plot the patterns[12]. Therefore, a diffractive order of
three is adopted in the optimization. We generate the
smooth CGH fringe functions and digitalize these fringes
at l ¼ 80 nm. Then, we detect the dominant points on the
digital fringes. Finally, we obtain the encoded data in the
CIF format, whose size is 120 MB. Meanwhile, to achieve
similar accuracy, the data size should reach 12.9 GB with-
out the process of non-maxima suppression.

Fig. 5. Deviation induced by non-maxima suppression.

Fig. 6. Result of non-maxima suppression.

Fig. 7. Statistics of the suppression errors.

Fig. 8. Used self-aligned CGH to verify the encoding accuracy.
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Figure 9 shows the layout of the CGH patterns after
encoding. The pattern in the middle is the self-aligned
CGH pattern. The minimum fringe spacing is 20 μm.
Considering the sensitivity to the fabrication error, the

amplitude CGH is adopted to suppress interference in-
duced by the fabrication. Similarly, the CGH pattern is
directly written onto the substrate to avoid the interfer-
ence induced by the process of copying the photomask
pattern.
The main wave-front phase errors of our system come

from the substrate error and pattern deviation. As it
shows in Fig. 10, we measure the substrate error using
the zero-order diffraction light, and the RMS of the sub-
strate error is 0.012λ, where λ ¼ 632.8 nm. For the CGH

used as a reflecting element, the RMS of the wave-front
phase error induced by the substrate error in the whole
optical path is 0.024λ.

The pattern deviation includes the writing and encod-
ing deviations. The deviation caused by the writing
machine is approximately 200 nm, then, the induced
wave-front phase error is approximately 0.03λ, according
to Eq. (1). Similarly, the estimation of the wave-front
phase error induced by the encoding deviation is less than
0.02λ. The abovementioned errors are calculated in the
whole optical path. Usually, the single optical path error
is used to assess the accuracy of the reflecting system. We
calculate the root-sum square (RSS) value of the whole
optical path and obtain the estimated wave-front phase
error induced by CGH, as listed in Table. 1.

We measure the wave-front phase error as it shows in
Fig. 11, and obtain the result in Fig. 12. The RMS of
the error is 0.016λ, which is smaller than the above esti-
mated error.

In conclusion, applying non-maxima suppression into
the high accuracy CGH-encoding process is efficient.
The designed diffractive order in the experiment is three,
and a smaller encoding error can be achieved if a diffrac-
tive order of one is used in the optical measurement,
according to Eq. (1). The experimental result shows that
the CGH encoded using this method will meet the require-
ment of highly accurate optical measurement.

This work was supported by the Foundation of Youth
Innovation Promotion Association, Chinese Academy of
Sciences (No. 20150192) and the Foundation of

Fig. 9. Layout of the CGH.

Fig. 10. Substrate error.

Fig. 11. Testing the reflecting wave-front generated by the
CGH.

Table 1. Error Estimation

CGH Errors Wave-front Phase Error∕λ

Substrate error 0.024

Pattern distortion error ∼0.03
Encoding error <0.02

Whole path RSS error <0.041

Single path RSS error <0.0205

Fig. 12. Experimental result.
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