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This Letter presents a simple and effective method to improve the signal-to-noise ratio (SNR) of compressing
imaging. The main principles of the proposed method are the correlation of the image signals and the randomness
of the noise. Multiple low SNR images are reconstructed firstly by the compressed sensing reconstruction
algorithm, and then two-dimensional time delay integration technology is adopted to improve the SNR. Results
show that the proposed method can improve the SNR performance efficiently and it is easy to apply the a
lgorithm to the real project.
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In the past few years, the theory of compressed sensing[1,2]

(CS) has greatly changed the sampling pattern and
retrieval scheme. It has been widely used in many areas,
such as terahertz (THz) imaging[3], CS radar[4], magnetic
resonance imaging (MRI)[5], free-space optical communica-
tion[6], optical fiber communication[7], and CS imaging[8].
The advent of the single pixel camera[9] in 2006 made the
compressing imaging become an active research area. Over
the next few years, the fast compressive imaging using the
scrambled block Hadamard ensemble was proposed, and it
can be easily implemented in the optical domain[10]. Katz
et al. proposed a concept termed compressive ghost imaging
in 2009[11]. In 2014, Liutkus et al. proposed a concept named
“imaging with nature,” which used the multiply scattering
medium as the measurement matrix[12]. Although compres-
sive imaging breaks the law of Nyquist sampling, the sys-
tem noise of compressive imaging is inevitable in real
applications. For example, for very short exposure imaging,
the integration time is very short, and the image signal
may be submerged in the noise. Therefore, improving
the signal-to-noise ratio (SNR) performance of compressive
imaging is of great significance. The way of improving the
SNR of compressive imaging can be divided into several
categories. For example, the simplest way is to improve
the sampling rate. Based on this, we can obtain more
measurements. However, a higher sampling rate means
that we will deviate from compressive imaging. Another
way to improve SNR performance is based on computa-
tional constraints in reconstruction phase. Akhlaghi
et al.[13] proposed a compressive correlation imaging method
with random illumination, and the authors demonstrated
the superior imaging capabilities at low sampling rates
and noisy environments. Mao et al. presented a method
to improve SNR performance of compressive imaging based
on spatial correlation[14]. The key of the proposed method is
second-order correction with the sensing matrix.

In this Letter, we propose a simple and effective
method to improve the SNR performance of compressive
imaging. The proposed method is mainly based on
the two-dimensional time delay integration (2D-TDI)
technology, which is usually used in the infrared focal
plane array[15]. 2D means that images are superimposed
frame by frame, and TDI is equivalent to increasing
the integration time. The mathematical theories of the
proposed method are the correlation of the image signals
and the non-correlation (randomness) of the noise.
Theoretically, the SNR performance of the reconstructed
image relies on the number of the superimposed images.
The more that images are superimposed, the better
the performance of the SNR will be. For example, if
the number of images is m, then the SNR can be im-
proved by

�����
m

p
times than before. The detailed analysis

about the proposed method will be illustrated in three
parts as follows. First, the system architecture of the
proposed method is introduced, and then the framework
of the compressive imaging under strong noise is
analyzed. Finally, we explain how to improve the SNR
performance by 2D-TDI, and the corresponding results
are discussed.

Figure 1 shows the schematic of the system setup. The
system is basically an optical computer [comprising a light
source, the object to be imaged, a digital micro-mirror
device (DMD), two lenses, a photo-electric converter,
an analog-to-digital converter (ADC), and a computer],
which computes the random linear measurements of the
object under view.

The object is focused by a biconvex lens onto the DMD,
which consists an array of N tiny micro-mirrors. The cell
size of the DMD is 7.6 μm, and the active area is 6.8 μm.
During the compressive imaging processing, the DMD will
be changedM times to obtainM measurements. From the
above setup, we can see that each measurement contains
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the complete information of the object. Then, the com-
pressive imaging can be represented as

y ¼ ΦMNx; (1)

where x is an N × 1 vector that represents the object
signal, and N is the number of the pixels. y is the
compressed image signal, which also can be represented
as a vector M × 1. x ¼ fx1; x2; x3 � � � xNgT , and y ¼
fy1; y2; y3 � � � yMgT . In the framework of compressive im-
aging, M < N and M∕N represents the sampling rate.
ΦMN is the measurement matrix, which can be imple-
mented by the DMD. In normal conditions, ΦMN is set
as a random Gaussian matrix. The recovery x from y is
usually called sparse reconstruction when the object is
sparse. But, if the object is not sparse, the imaging model
can be modified as

y ¼ ΦMNx ¼ ΦMNψα; (2)

where α is the sparse coefficient, and ψ is a sparse
basis. ψ is always set as the Fourier basis or wavelet
basis. Reconstruction algorithms, such as orthogonal
matching pursuit (OMP)[16] or TV minimization by aug-
mented Lagrangian and alternating direction algorithm
(TVAL3)[17], are two popular methods to reconstruct
the original signal from compressed sampling points.
Figure 2 shows the reconstruction results of compressive
imaging under a noise-free environment. Figure 2(a) is
an original image with the spatial resolution of

96 × 96. Figure 2(b) is the reconstructed image under
a noise-free condition. The reconstruction algorithm is
chosen as TVAL3 and the sampling rate is set as 0.1.
We can see from visualization that in noise-free environ-
ment and TVAL3 algorithm can reconstruct the image
with high SNR.

In order to evaluate the reconstruction performance
objectively, the peak SNR (PSNR) is introduced, and it
is defined as

PSNRðdBÞ ¼ 10 × log10
2552

MSE
: (3)

The mean square error (MSE) is shown as

MSE ¼ 1
M × N

XM
i¼1

XN
j¼1

e2ði; jÞ; (4)

where M and N are the column and row numbers of an
image, respectively, and eði; jÞ is the difference between
the original image and reconstructed image at a pixel
location. The MSE between the reconstructed image
[Fig. 2(b)] and the original image [Fig. 2(a)] is 80.3971,
and the PSNR of the reconstructed image is 29.0784 dB.

However, in the real application of compressive imag-
ing, noise is inevitable, and sometimes signals will be
covered by strong noise. Figure 3 shows the reconstruction
results of compressive imaging in different noise environ-
ments, and the reconstruction algorithm is still chosen to
be TVAL3. The spatial resolution of the images is still
96 × 96. Sampling rates are all set as 0.6. Figure 3(a)
is the reconstructed image in 45 dBW (dBW represents
the power of the noise) Gaussian noise environment; we
can see that there is small amount of random point noise
in the reconstructed image, but the performance of the
reconstructed image is still satisfied. Figures 3(b)–3(d)
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Fig. 1. Schematic of the setup.

Fig. 2. Reconstruction results of compressive imaging under a
noise-free environment. (a) Original image with the spatial res-
olution of 96 × 96; (b) the reconstructed image by TVAL3
under a noise-free condition.

Fig. 3. Reconstruction results of the compressive imaging in dif-
ferent noise environments.
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are reconstructed images in 55, 60, and 65 dBW noise envi-
ronments, respectively. As we can see, that while the noise
is increasing, signals are gradually covered by noise. The
PSNRs of the following reconstructed images are 23.6373,
13.4012, 10.6573, and 9.4279 dB, respectively.
We then analyze the mathematical framework of the

compressive imaging in a noisy condition (assume the ob-
ject is sparse). The compressive imaging in a noisy envi-
ronment can be represented as

y0 ¼ ΦMNx þ n; (5)

where y0 is the compressed signal in noisy condition, and
n represents random noise. Further, Eq. (5) can be repre-
sented as another form,

y0 ¼ y þ n; (6)

where y is the compressed image signal in the noise-free
condition. This suggests that the compressed signal in
the noisy condition can be considered as the sum of image
signal and noise. The reconstruction of compressive imag-
ing is to obtain image signal x 0 (with noise) from com-
pressed signal y0;

y0 ¼ y þ n ¼ ΦMNx 0: (7)

The solution of the Eq. (7) is to solve the optimization
problem

min λ‖x 00‖
1
þ 1
2
‖y0 −ΦMNx 00‖

2

2
: (8)

Here, x 00 is the solution of the Eq. (7), and it is equiv-
alent to image x 0. λ balances the sparsity of the solution
and the fidelity of the approximation to y0. We let
x 0 ¼ x þ g, thus, Eq. (7) can be further expressed as

y þ n ¼ ΦMN ðx þ gÞ ¼ ΦMNx þΦMNg: (9)

Thus, the solution of the Eq. (9) can be regarded as the
sum of two optimization problems, which can be written as

min λ1‖x0‖
1
þ 1
2
‖y −ΦMNx0‖

2

2
; (10)

min λ2‖g0‖
1
þ 1
2
‖n −ΦMNg0‖

2

2
: (11)

Therefore, the reconstructed signal x 0 can be thought as
the sum of x0 and g0. x0 represents the original image sig-
nal, and g0 represents the noise. Note, g0 is not equal to n,
but they all have the same characteristic of random dis-
tribution. From the above equations, we can draw a con-
clusion that under the noisy condition, the reconstructed
signal can still be regarded as the sum of image signal and
noise, and even in a strong noise environment, the image
signal is still retained in the reconstructed signal.

Based on the above conclusion, we can use the correla-
tion of the image signal and the randomness (non-
correlation) of the noise to improve the performance of
SNR. Here, we adopt 2D-TDI technology to improve
the SNR of the compressive imaging. The principles of im-
proving the SNR by 2D-TDI are the correlation of the im-
age signals and the non-correlation of the noise. Assume
the object in Fig. 1 is static or moving slowly, and there
are m frame reconstructed images to be used in the
2D-TDI method. As we all know, power is proportional
to the square of the voltage. Thus, the power of the recon-
structed image signal after the 2D-TDI algorithm can be
expressed as

PS ¼
�Xm

i¼1

Vsi

�2

¼
Xm
i¼1

V 2
si þ 2

Xm
i¼1

Xi−1

j¼1

Ci;jV siV sj ; (12)

where Vsi andVsj are the ith and jth reconstructed image
signals, and Ci;j is the correlation coefficient between Vsi

and Vsj , 0 ≤ Ci;j ≤ 1. Similarly, the power of noise can
also be expressed as

PN ¼
�Xm

i¼1

VNi

�2

¼
Xm
i¼1

V 2
Ni þ 2

Xm
i¼1

Xi−1

j¼1

CN
i;jVNiVNj ;

(13)

where VNi and VNj are the ith and jth noise signals, and
CN

i;j is the correlation coefficient between VNi andVNj . As
we all know, random noise has the characteristics of non-
correlation. Thus, theoretically, CN

i;j ¼ 0. Then, Eq. (13)
can be expressed as

PN ¼
�Xm

i¼1

VNi

�2

¼
Xm
i¼1

V 2
Ni ¼ mV 2

N ; (14)

where VN is the equivalent noise. Due to the object being
static or moving slowly, the correlation between each im-
age signal is very high. So, Ci;j approximately equals one.
Thus, Eq. (12) can be further expressed as

PS ¼
�Xm

i¼1

Vsi

�2

¼
Xm
i¼1

V 2
S þ 2C2

mV 2
S ¼ m2V 2

S ; (15)

where Vsi is the image signal in the ith frame, and VS

represents the equivalent image signal. Thus, the SNR
of power is

SNRðpowerÞ ¼
PS

PN
¼ m2V 2

S

mV 2
N
: (16)

We note that the original power SNR is SNR0, and the
SNR0 can be expressed as
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SNR0 ¼
V 2

S

V 2
N
: (17)

Thus, we have the conclusion that

SNRðpowerÞ ¼ m·SNR0ðpowerÞ: (18)

From Eq. (18), we can see that the power SNR is
m times more than before. Due to the fact that power
is proportional to the square of the voltage, thus, the
SNR of the image is

�����
m

p
times more than before, as shown

in Eq. (19), where m is the number of frames;

SNR ¼ �����
m

p
·SNR0: (19)

We then evaluate the performance of the proposed
method by numerical simulations. PSNR (dB) is adopted,
and it is already introduced above. Figure 4(a) shows
the reconstructed image under 55 dBW Gaussian noise.
The spatial resolution of the images in Fig. 4 are
96 × 96. Figures 4(b)–(d) are reconstructed images by
the proposed method withm ¼ 5, 10, and 15, respectively.
We can see from Fig. 4 that with the increasing of m, the
SNR performance is gradually improving.
Then, we compute the PSNRs of the reconstructed im-

ages under different numbers ofm, and the Gaussian noise
is also set as 55 dBW. Table 1 and Fig. (5) show the rela-
tionship between PSNRs and m. We can see that PSNRs

increase as m increases. But, the relationship is not con-
sistent with Eq. (19). This is because the correlation co-
efficients are not actually zero or one.

Next, we consider a situation of a strong noise condi-
tion. The image signal is covered by noise, as shown in
Fig. 6(a). The Gaussian noise is 65 dBW. We then verify
the performance of the proposed method, and the letters
“NUST” are still chosen as the test image.

From Fig. 6, we can see that even in a strong noise con-
dition, the proposed algorithm is still able to improve
the SNR.

In conclusion, we propose a simple and effective method
to improve the SNR of compressive imaging. First, we
illustrate the principles of compressive imaging, and then
the reconstruction model under a noisy condition is intro-
duced. Finally, the way of improving SNR based on the
correlation of the image signals and randomness of noise
are analyzed, and the performance is also verified.

This work was supported by the National Natural Sci-
ence Foundation of China (No. 11503010) and the Funda-
mental Research Funds for the Central Universities
(No. 30916015103).
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