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Simplified spherical harmonics approximation (SPN) equations are widely used in modeling light propagation in
biological tissues. However, with the increase of order N, its computational burden will severely aggravate. We
propose a graphics processing unit (GPU) accelerated framework for SPN equations. Compared with the conven-
tional central processing unit implementation, an increased performance of the GPU framework is obtained
with an increase in mesh size, with the best speed-up ratio of 25 among the studied cases. The
influence of thread distribution on the performance of the GPU framework is also investigated.
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Three-dimensional (3D) optical imaging technology has
been widely used in the field of biomedical imaging because
of its significant advantages of noninvasive detection, high
temporal resolution, and low cost®Z. The major applica-
tion of 3D optical imaging is to study the propagation of
light in biological tissues. This can be accurately described
by the radiative transport equation (RTE) and the Monte
Carlo (MC) method®¥. However, the RTE is difficult to
solve analytically, especially for complex structures. The
MC method is time consuming, as it requires a large num-
ber of photons for reliable simulation resultsZ. To facilitate
the development of 3D optical imaging, the diffusion equa-
tion (DE)E2, the first order of the simplified spherical har-
monics approximation (SPN) of the RTE, has been widely
used in modeling the light propagation in biological tissues
because of its high computational efficiency. With the
assumption of light propagating diffusively, the DE is
not accurate when the observed regions are high absorption
or low scattering tissues’’. In the past decades, the
SPN equations, the high order approximations for the
RTE, have been studied by many groups™™¥, Compared
to DE, these equations provide much more accurate
and reliable results for tissues with a larger variation of op-
tical parameters, especially for high absorption and low
scattering regions. The accuracy of the SPN equations
for describing light propagation increases with its order
N.However, with the increase of the order IV, the computa-
tional burden would severely aggravate, which limits the
applications of high order SPN equations in 3D optical
imaging.

To reduce the computational burden of SPN equations,
Li et al. proposed an extended finite element method
(FEM) for acceleration. Lu et al. proposed a parallel
adaptive mesh evolution strategy to improve both the
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modeling precision and simulation speed’?. However, they
were implemented on a central processing unit (CPU)
based on moderately parallel systems. Compared with
the parallel system based on multi-core CPUs or multi-
core clusters, the graphics processing unit’s (GPU) based
acceleration technique has a much higher raw processing
power as well as a relatively lower cost. With the rapid
development of the GPU hardware, the GPU-based
acceleration technique has been applied to accelerate
the MC simulations?, making it a powerful tool for the
simulation of light propagation in tissues. Taking the
advantages of the GPU technique, a GPU-accelerated fi-
nite element solver for the DE was implemented™Y, which
was used for calculating the forward model of diffusion op-
tical tomography. However, because of the inherent char-
acteristics of the DE, the acceleration performance was
not significant, and the applicability was limited, espe-
cially when the tissues are of high absorption or low
scattering.

In this Letter, to facilitate the application of the SPN
equations to be more efficient, a GPU-accelerated frame-
work is proposed for the SPN equations (referred hereafter
as the GPU-based method). The accelerated framework is
implemented by using a compute unified device architec-
ture (CUDA)Y. In this framework, the SPN equations are
solved with the FEM whose matrices are stored in a com-
pressed sparse row (CSR) format that makes good use of
the computing potential of the GPU hardware. The solu-
tion of the SPN equations is converted into the problem of
a sparse linear system, which is then solved by the parallel
conjugate gradient (CG) algorithm implemented on a
GPU kernel.

The accuracy of the GPU-based method was first evalu-
ated by comparing it with the MC simulation. Then, the
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speed-up ratio between the GPU-based method and the
conventional CPU computation (CPU-based method)
was evaluated. The influence of the mesh size and mesh
structure on the acceleration performance was also inves-
tigated. Finally, the performance of a parallel CG solver
was evaluated with different thread organizations in the
kernel function.

Based on the RTE, the SPN equations and the boun-
dary conditions can be detailed as follows™:
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where v is the unit outer normal vector, S; is the ith
composite moment of the light source in the scattering re-
gions, N is the order of the equation, ¢; is the ith composite
moment of the radiance of the light source, {; ¢ is the
coefficient of the illumination source, {;v,,, and {;, ,
4] Vo and C
from Ref. L] The SPN equations are solved using the
FEMY. Assume that the domain of object Q is discretized
as a tetrahedral grid . The composite moments ¢;(r)
and the original light source S;(r) at a discrete point k
can be given by the interpolation of the nodal coefficients
@, and S; ; using the piecewise polynomial shape function
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are the coefficients which can be calculated
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Si(r) = Sipvi(r), (3)
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where N; is the total number of nodes on the entire
discretized domain 6. When using the FEM for the SPN
equations, they can be reformulated into the matrix
equation:
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where {; ¢ is the coefficient of the illumination source. vy, v,
are the piecewise polynomial shape functions. fy.,, () can
be obtained by solving a set of first-order equations. Thus,
the linear relationship that links the unknown source dis-
tribution S and the boundary measurements ¢ could be
obtained.

Incorporating the boundary conditions, the exiting
partial current J on the boundary can be calculated as

(N+1)/2

J= Z <JV¢

=1

€l,(N+1)/2], (7)
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where ﬂ Vo, and ﬂ are the boundary coefficients and can
be calculated accordlng to Ref. [11].

From the above derivation of the finite element solver
for SPN equations, the main procedure includes assem-
bling the system matrix and solving the linear equations,
which can be parallelized with the GPU technique.

The flowchart of the proposed GPU-based accelerated
SPN equations is shown in Fig. 1. The main concerns of
the GPU-based method are the parallelization of assem-
bling the system matrices M, B, and S, and solving the
linear relationship of Eq. (4) with the parallel CG solver.
In Fig. 1, the mesh data of objects and optical properties of
tissues are prepared in the host memory on the CPU, and
then copied to the device memory on the GPU. Because
programs run on the GPU are highly influenced by the
storage allocation and memory access, the mesh and op-
tical properties data are loaded into the texture cache for
frequent access. Then, the element of system matrices M,
B, and S are assembled in each thread using CUDA. The
size of the system matrices would become extremely large
if the order of SPN equation is too high. Consequently, the
storage of the system matrices in the normal format will
take a large amount of memory. Thus, the CSR format is
adopted for the storage of system matrices. There are also
some other formats for matrix storage, such as the ELL-
PACK (ELL)Y or Hybrid2!. However, these formats usu-
ally require a large amount of memory for storage. After
the system matrices are constructed, a GPU-based CG
solver is applied to calculate the radiance of the light
source @. Finally, the exiting partial current J is calcu-
lated via the coping ¢ from the device to the host memory.

The major feature of the CG iterative solver is the fast
calculation of the product and addition of vectors, which is
heavily influenced by the memory access and data distri-
bution on the GPU. The kernel function for calculating
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Fig. 1. Flowchart of the GPU-accelerated framework for the
SPN equations.

the product of the sparse matrix and vector is optimized
by using the shared memory of each block in this study. To
accelerate the process, each row of the sparse matrix is set
in a warp to calculate the product and addition?. Thus,
the block size (blockSize) should be a multiple of the warp
size (currently 32 of NVIDIA device). The kernel function
of matrix-vector multiplication for the CSR format is
shown in Fig. 2. When performing the multiplication with
the elements of vector z, the elements are grouped by
cooperating threads which access adjacent elements of

_ global  void spmv_csr_vector_kernel ( const int num_rows ,
const int * ptr, const int * indices , const float * data,
const float * x, float * y)
{
__shared  float vals [];
int thread_id = blockDim.x * blockldx.x
+ threadldx.x ; // global thread index
int warp_id = thread_id / 32; // global warp index
int lane = thread_id & (32 - 1); // thread index within the warp
// one warp per row
int row = warp_id ;
if (row <num_rows ){
int row_start = ptr [row ];
int row_end = ptr [ row +1];
// compute running sum per thread
vals [ threadldx.x ] = 0;
for (int jj = row_start + lane ; jj <row_end ; jj += coopSize)
vals [ threadldx.x ] += data [jj] * x[ indices [jj ]];
// parallel reduction in shared memory
for(int ii = coopSize/2 ; ii >0 ;ii>>=1)
vals [ threadldx.x | += vals [ threadldx.x +ii];
// first thread writes the result
if ( lane == 0)
y[ row ] +=vals [ threadldx.x ];}
}

Fig. 2. Kernel function of matrix-vector multiplication for the
CSR sparse matrix format using 32 thread warp per matrix row.

the row. From here on, the number of cooperating threads
assigned to each row is indicated by coopSize. Each group
of cooperating threads is multiplied by the vector and
added up into the shared memory. All of the elements
on the shared memory are then summed up to obtain
the multiplication result. For the additional step of shared
memory, a conflict-free implementation of parallel reduc-
tion is adopted in our work to improve the performance.

We evaluated the performance of the proposed GPU-
based method with the CPU-based method on a computer
with an Intel Xenon 5440 processor of 2.4 GHz and an
NVIDIA Tesla C2050 GPU. Both the CPU and GPU
implementations made use of a double-precision floating-
point format.

Firstly, the accuracy of the GPU-accelerated SPN equa-
tions was validated on two kinds of phantoms by compar-
ing it with the MC simulation™®2/, which was considered
as the gold standard for describing light propagation in
tissues. For all of the simulations, the photon number
of the light source was set to be 1 x 107 to get reliable sim-
ulation results. The average relative error (ARE) was used
to estimate the discrepancy quantitatively between the
calculated results dip, of the GPU-accelerated SPN equa-
tions and the simulated results d},, of the MC method:

Ny

1 . . .
ARE = o > abs(di, — dip,)/ max(di),  (8)
d =1

where N, is the dimension of the results.

As shown in Figs. 3(a) and 3(b), we selected a homo-
geneous cylindrical phantom and a digital mouse for val-
idation. The cylindrical phantom had a radius of 5 mm
and a height of 10 mm in which a spherical light source
was located near the center of the phantom (0, 1.5, and
0 mm). The phantom was discretized into 56664 tetrahe-
dral elements and 11161 nodes. The optical parameters of
the phantom, described by the absorption coefficient (u,),
scattering coefficient (u,), anisotropy coefficient (g), and
refractive index (n) of the phantom, were 0.3 mm™!,
5mm~', 0.9, and 1.37, respectively. The comparison
between the GPU-based method and the MC method was
observed and the curve at the position of z = 0 mm was
extracted, as shown in Fig. 3(c). The ARE between the
transmittance results of the GPU-accelerated SPN equa-
tions and the MC method were 0.0539, 0.0114, 0.0113, and
0.0108 for N =1, 3, 5, and 7, respectively.

The digital mouse model was used to demonstrate the
capability of the proposed method in handling light propa-
gation in the tissues with a complex structure. The organs
included in the digital mouse were shown in Fig. 3(b), and
the related optical properties at the wavelength of 650 nm
were listed in Table 1. A spherical light source with a ra-
dius of 1.7 mm was located in the liver of the digital mouse.
The transmittance results at a height of z = 22 mm were
extracted for the comparison. The comparative result
plotted versus the observed points was shown in Fig. 3(d).
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Fig. 3. Phantoms used in accuracy validation: (a) homogeneous
cylindrical phantom. (b) Digital mouse model based phantom.
(¢) and (d) comparative results between the GPU-accelerated
SPN equations (N =1, 3, 5, and 7) and the MC method of
the homogeneous cylindrical phantom and digital mouse,
respectively.

Table 1. Optical Properties of Digital Mouse Phantom
at the Wavelength of 650 nm, including Absorption
Coefficient (u,), Scattering Coefficient (u,), Anisotropy
Coefficient (g), and Refractive Index (n)

Tissue U, (mm=1) iy (mm=1) g n

Muscle 0.11636 4.6735 0.9 1.37
Liver 0.47078 6.999 0.9 1.37
Lung 0.26296 36.818 0.94 1.37
Heart 0.07859 6.7104 0.85 1.37
Kidney 0.08811 16.846 0.86 1.37
Stomach 0.01504 18.497 0.92 1.37

Secondly, the acceleration performance of the GPU-
based method was investigated by comparing it with the
CPU-based method. The phantom used in this investiga-
tion had the same size and optical properties as that used
in the first phantom of accuracy validation. The influence
of the size of system matrix on the acceleration perfor-
mance was evaluated by discretizing the phantom into
different numbers of tetrahedrons from 3421 to 94528.
The ratio between the total time cost of the CPU-based
SPN method and that of the GPU-based one was shown
in Fig. 4(a). The speed-up ratio increased with the number
of tetrahedral meshes, and a best speed-up ratio could be
up to 25 in the observed cases.

The acceleration performance of the GPU-accelerated
CG solver with a different coopSize and blockSize in kernel
function was also investigated. A cylindrical phantom
with the same size and optical properties as that used
in the above validation was adopted in this investigation,
which consisted of 79626 tetrahedrons. The speed-up ratio
of the GPU-accelerated CG solver over the CPU one for
solving the system matrix of SP7 equations was shown in
Fig. 4(b), where the blockSize was from 32 to 256, and the
blockSize was the integer times the warp size. The
result showed that the best speed-up ratio (13.867) was
obtained when the coopSize and blockSize were set to
be 8 and 192, respectively. The speed-up ratio increased
with the number of the blockSize when it was smaller than
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Fig. 4. (a) Speed-up ratio of the total processing time using the
GPU-accelerated SPN method over the CPU-based one.
(b) Speed-up ratio of the GPU-accelerated CG solver over the
CPU one for solving the system matrix of SP7 equations.
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96. However, the speed-up ratio remained steady when the
blockSize was bigger than 96. The coopSize of 8 or 16 pro-
vided a better performance.

During the experiments, there were some other findings
about the GPU-accelerated CG solver. Although the CG
solver for solving the linear problem is efficient and stable
in most cases, it could become divergent for the case of a
large scale system matrix, especially for high order SPN
equations. The acceleration is highly influenced by the fill-
ing fraction or the sparsity of the system matrix for differ-
ent order SPN equations. We find that the non-zero
elements of the system matrix for the SP1 equation gather
closer to the diagonal line compared with the SP3, SP5,
and SP7 equations. The non-zero elements of the system
matrix for the SP7 equations have the most decentralized
distribution, and the size of the sparse system matrix for
SP7 is 15 times larger than that of SP1. As a result, the
CG solver may be divergent for the large scale matrix and
high order SPN equations.

The kernel function of the CG solver is highly influenced
by coopSize. The coopSize of 8 or 16 provides a better per-
formance in this study. This may be attributed to the
sparsity of the system matrix. Each row of the system ma-
trix is processed in a warp on the GPU. However, when the
number of non-zero elements in each row is less than warp
size (32) or even smaller, the threads will be idle. So, we
defined the coopSize to avoid thread idling when the non-
zero elements were less than the warp size.

In conclusion, a GPU-based acceleration framework for
SPN equations is proposed to study the light propagation
of 3D optical imaging. The accuracy validation experi-
ments demonstrate that the proposed GPU-accelerated
method has a good agreement with the MC simulation.
Furthermore, the acceleration performance investigation
experiments illustrate that the proposed GPU-accelerated
method has an excellent acceleration performance over the
CPU-based method, with a best speed-up ratio of 25 for
the observed cases. The performance of the proposed
GPU-accelerated method proved that it is a powerful tool
for 3D optical imaging.
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