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In this Letter, we propose a novel three-dimensional (3D) color microscopy for microorganisms under photon-
starved conditions using photon counting integral imaging and Bayesian estimation with adaptive priori infor-
mation. In photon counting integral imaging, 3D images can be visualized using maximum likelihood estimation
(MLE). However, since MLE does not consider a priori information of objects, the visual quality of 3D images
may not be accurate. In addition, the only grayscale image can be reconstructed. Therefore, to enhance the visual
quality of 3D images, we propose photon counting microscopy using maximum a posteriori with adaptive priori
information. In addition, we consider a wavelength of each basic color channel to reconstruct 3D color images. To
verify our proposed method, we carry out optical experiments.
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Under photon-starved conditions such as low light level
environment, three-dimensional (3D) image sensing and
visualization for microorganisms have recently become a
challenging topic. In conventional microscopy, since illu-
mination devices with high-power radiation may be used
to detect the image of microorganisms, it may cause dam-
age, deformation, or destruction of the structure of 3D
microorganisms. To avoid this problem, light sources with
low-power radiation may be required. A photon counting
detector or imaging technique® may be applied to this
microscopy system because there are few photons in
low-power radiation. To reconstruct or visualize 3D im-
ages for microorganisms, integral imaging®¥ may be used
which can obtain 3D information by capturing multiple
2D images with different perspectives through a lenslet
array or camera array. In photon counting integral
imaging, statistical estimation methods such as maximum
likelihood estimation (MLE)¥ or maximum a posteriori
(MAP) with fixed priori information? can be used for
3D visualization. However, these estimation methods have
limitations. In MLE;, since priori information is assumed to
be a uniform distribution, estimation results may be incor-
rect. In MAP with fixed priori information, all pixels of the
estimated image are related to the only fixed statistical
parameters. Thus, the estimation results may seem to
be bright or dark through the entire estimated image.
In addition, both estimation techniques can reconstruct
the only grayscale 3D images.

To solve these estimation problems, in this Letter, we
propose a novel 3D color microscopy for microorganisms
under photon-starved conditions using photon counting
integral imaging and Bayesian estimation with adaptive
priori information. We obtain the adaptive priori
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information by reconstructing 3D sliced images with vari-
ous reconstruction depth planes. Then, applying MAP to
each basic color channel, we estimate more accurate 3D
color microscopy images.

A photon counting detector can be modeled statistically
by a Poisson distribution since photons occur rarely in
unit time and space?. Figure 1 illustrates a mathematical
model of a photon counting imaging system.

For computational simplicity, we use one-dimensional
notation only. To extract photons from 3D scenes in a
photon counting model, the original scene, I(z), is normal-
ized because the unit energy of the scene and the control-
lable expected number of photons (N,) are used to
generate photons?. Photon generation in our statistical
model is described by the following
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Fig. 1. Mathematical model of our photon counting imaging
system.
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C(z)|A(x) ~ Poisson[N ,A(z)], (2)

where A(z) is the normalized irradiance of the detected
scene, N, is the number of pixels in the image, and
C(z) is the number of photons extracted from the normal-
ized scene. In this Letter, we refer to C(z) as the photon-
limited image.

In general, digital image has three basic color channels;
red (R), green (G), and blue (B). Since each color channel
has different mean optical frequencies and photons with
different wavelengths carry different energy as per Egs. (3)
and (4), the photon generation process for each color
channel may be different from each other?
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where N, is the number of photons, W is the energy
incident on the photo-surface during measurement, h is
Planck’s constant, v, is the mean optical frequency of
the radiation, and # is the quantum efficiency which rep-
resents the average number of photoevents produced by
each incident photon (7 > 1).

For 3D visualization of microorganisms under photon-
starved conditions, we introduce an integral imaging tech-
nique. Figure 2 shows the pickup stage of integral imaging
using synthetic aperture integral imaging (SAII)2 and an
objective lens to capture the elemental images with high
resolution.

In SAII, each camera can detect the image with slightly
different perspectives. Under photon-starved conditions,
using SAII and Egs. (1) and (2), multiple photon-limited
images can be generated. Since the statistical distribution
of each photon-limited image follows a Poisson distribu-
tion by a mathematical photon counting imaging model;
the likelihood function can be constructed as per the
following2?

Fig. 2. Pickup stage of photon counting microscopy using SAII.
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where 4 = (44, ..., A). Using MLE we can estimate each 4,
as '}/ N,. Therefore, we can reconstruct 3D images under
photon-starved conditions using estimated images and a
computational volumetric reconstruction algorithm of
integral imaging'™ as per the following

K
I(z,2) Npé(m); Cole+Az(k—1),  (6)
ao = (7)

where O(z) is the overlapping factor for reconstruction,
Az is the number of shifted pixels for superposition of a
reconstruction process, p is the gap between the cameras,
f is the focal length of the camera lens, ¢, is the image
sensor size, and z, is the reconstruction depth.

However, since MLE uses no priori information (i.e., the
priori information is assumed to be a uniform distribu-
tion), the estimated image is not accurate. To obtain a
more accurate estimated image, Bayesian estimation such
as MAP with fixed priori information? was proposed. It
uses a gamma distribution with a and g as the priori
information because it is a conjugate priori of Poisson
distribution. The priori information can be defined by
the following?

wlia) = L g e,
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Multiplying Eq. (5) by Eq. (8), the posteriori distribution
can be obtained. To estimate the image, the posteriori
mean can be calculated by MAP as per the following

A > 0. (8)
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Ci(z) >0, 9)
where a;, = p2 /63, B = pr/ 03, iy is the mean of 1;(z), and
o7 is the variance of A;(z). Thus, using Egs. (6) and (9),
the reconstructed 3D images can be obtained as per the
following

. 1

K
I(z,2,) = N,00) ;ak(:ﬁ +Az(k—1)).  (10)

However, in MAP, because the only fixed statistical
parameters of the priori distribution are used throughout
the entire image, it may difficult to obtain the accurate
3D images at various reconstruction depths. To enhance
the accuracy of the MAP estimation, we use adaptive
priori information. Since the number of shifted pixels
for overlapping multiple photon-limited images in
reconstruction process, Az, is varied corresponding
to various reconstruction depths, z,, the statistical
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parameters can be adaptive at each reconstruction planes
as per the following

1 K
k(@) = 503 Z (z+ Ax(k —1)), (11)
2 () = Ela(o) — ., () (12
w0 =50 (13)
plo) =20, (19

where E[ -] is the expectation operator. From Egs. (11)-
(14), it is apparent that statistical parameters of the priori
distribution, @ and g, are functions of the pixel position, z,
and reconstruction depth, z,. Using these adaptive statis-
tical parameters, the estimated images and reconstructed
3D images can be obtained as follows

Culx) + a (1)

/I/k(“L) = Np(l ""_ﬂz,(fp))’ CA(“L) >0, (15)
K
I'(z, z,) NO Z/l (z+ Az(k—1)). (16)

To verify our proposed method, we carried out an optical
experiment. A 7 X 7 camera array was used. The focal
length of the camera lens was 105 mm. The moving
gaps between cameras in the z and y directions were 2
and 1 mm, respectively. The microorganism was a
ladybug. To magnify the microorganism, an objective
lens (20x) was used. Each recorded image had
2001 pixels x 2001 pixels. The location of the magnified
object image was 234 mm from the camera array.

To detect multiple images under photon-starved condi-
tions, we normalized the recorded images by Eq. (1)
and generate the color photon-limited images with
N, = 20000 by Eqgs. (2) and (4) as shown in Fig. 3.

Then, using Egs. (6), (10), and (16), the reconstructed
3D images using MLE, MAP with fixed statistical

(@) (b)

Fig. 3. Recorded images: (a) original image;
limited image with N, = 20000.

(b) photon-

© (d

Fig. 4. Reconstruction results by the following: (a) computa-
tional volumetric reconstruction; (b) MLE; (¢) MAP with fixed
statistical parameters; (d) MAP with adaptive statistical

parameters.
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Fig. 5. MSE for various reconstruction depths.

parameters, and MAP with adaptive statistical parame-
ters can be obtained as shown in Fig. 4.

Asshown in Fig. 4(d), the reconstructed image by MAP
with adaptive statistical parameters has better visual
quality and is more accurate than the others. To evaluate
the performance of our proposed method, we calculate the
mean square error (MSE) for each method. For calculating
the MSE, we use the reconstructed image using the origi-
nal color images as shown in Fig. 4(a) as the reference
5 shows the MSE results for each method.
Therefore, it is noticed that our proposed method has
better performance than the others.

image. Figure
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In conclusion, we propose a novel 3D color microscopy
for microorganisms under photon-starved conditions. Us-
ing priori information with adaptive statistical parameters
and MAP, we obtain more accurate 3D images at various
reconstruction depths. In addition, since photons with
different color channels carry different energies to the im-
age sensor, color photon counting integral imaging can be
modeled considering this feature. Finally, we believe that
our technique can be applied to various applications under
photon-starved conditions.
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