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The propagation and transformation of laser beams 
are the fundamental problems in the field of laser tech-
nique, optical communication and optical information 
processing, etc. The propagation and transform of la-
ser beams include two aspects: spatial and temporal 
domains[1–3]. The propagating equation of transverse 
lightwave is identical in form to that of equation de-
scribing the temporal evolution of an optical pulse in 
a dispersive medium. This observation enables us to 
transfer directly many concepts dealing with diffraction 
to the problem of temporal propagation. M. Nakazawa 
et al. developed a time-domain ABCD matrix formal-
ism to deal with the temporal evolution of an optical 
pulse by analogy with the ABCD formalism in the spa-
tial domain[4]. In this paper, we play the emphasis on 
the analogy of some basic concepts in time-domain and 
space-domain, and some general transformation pairs 
are obtained.

In the space- domain, based on Maxwell’s equations, 
considering the two-dimensional case (x, z) for simplicity, 
under the slow-changing approximation, the master equa-
tion of the optical field amplitude can be written as[1]
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We take E in the form of
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where = −1i , m is a constant, k is the wave number 
and q is the complex radius of curvature of Gaussian 
beam.

In time-domain, for pulse width >100 fs, the con-
tribution of the third-order dispersion term is quite 
small, and ignoring nonlinearity and all loss, nonlinear 
Schrödinger (NLS) equation that governs propagation 
of optical pulses can written in the form[2]
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where A is the slowly varying amplitude of the pulse en-
velope and T is measured in a frame of reference mov-
ing with the pulse at the group velocity vg, T = t - z/vg. 
b2 is group velocity dispersion (GVD) parameter.

We take A in the form of
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where p is a complex parameter of Gaussian beam and 
A0 is the initial amplitude. According to the principle 
that analogical equations have the same solutions, we 
can derive the analogical pairs of T (time-domain) and 
x (space-domain), -1/b2 (time-domain) and k (space-
domain), and z (time-domain) and z (space-domain).

The propagation of fundamental Gaussian beam 
can be described by q parameter, the beam spot size  
w (z) and radius of curvature R(z) at the plane z and 
they are
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where w0 is the beam spot size at the plane z = 0.
The propagation of ultrashort pulses can be described 

by the ABCD matrix, assuming that the initial chirp of 
input pulse (at the plane z = 0) is 0, and the pulse-
width t (z) and chirp C(z) at the plane z are[4]
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The space and angular spectrum product of fundamen-
tal mode Gaussian beam is

		       ω θ λ× =0 0.6367 . � (9)

The product of pulse-width and spectrum-width in ul-
trashort pulses is a constant, which relates with the 
waveform of a pulse laser. For the unchirped Gaussian 
pulse, the constant is 0.441, and

		      τ × ∆ = 0.441,v � (10)

where Δv is the full-width at half-maximum (FWHM) 
bandwidth of the pulse beam.

The Fresnel number of spherical wave in space- 
domain (N) and pulse beam in time-domain (Nt) can 
be written as[5]
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where a is the half-width of the slit, R is the radius 
of curvature, L is the transmission distance, c is the 
speed of light in a vacuum, t is the pulse-width, l is 
the wavelength, and A and B are the matrix elements 
of system transform matrix.

With the paraxial approximation, the penetration 
function of lens in space-domian is given by[4]
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where (x1, y1) are the coordinates of input plane, f is the 
focal length of lens.

When an unchirped Gaussian pulse passes through a 
kerr medium, it will be chirped. The chirp is treated as 
a time-lens, and neglecting the constant phase and the 
group delay, the transmission function of the time-lens 
is described as[6]
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where ft is the focusing time and w 0 is the central 
wavelength of ultrashort pulse.

Comparing Eqs. (13) and (14), we can obtain the 
analogy of k/f and w0/ft.

In summary, by the rule that similar equations have 
similar solutions, the solutions of propagational equa-
tions in space-domain and time-domain are derived. 
The analogies of space-angle spectrum product and 
time-bandwidth product, spatial Fresnel number and 
temporal Fresnel number, and focal length of lens and 
focusing time are included in Table 1.
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Table 1. Analogy of beam propagation in space-
domain and time-domain

Time-domain Space-domain

T x
-1/b2 k
z z
1/C R(z)/k
t  × Δv = 0.441 w0 × q = 0.6367l
Nt = -ct 2(1/R + A/B)/l N = a2(1/R + A/B)/l
w0/ft k/f


