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In this letter, a new analytical method is presented to calculate of the semiconductor optical gain coefficient.
This method is particularly suitable for theoretical analyses to determine the dependence of semiconductor
gain on the total carrier density and temperature in the semiconductor lasers. Also, the optical gain
functions for semiconductor optical gain coefficient are presented analytically. The analytical evaluation
is verified with numerical methods, which illustrates the accuracy of these obtained analytical expressions.
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The Free-Carrier theory and the Fermi-Dirac distribution
played a significant role in the investigation of optical
gain in semiconductor lasers. It is well known, the con-
cept of a semiconductor laser was introduced by Basov
et al.

[1] who suggested that stimulated emission of radi-
ation could occur in semiconductors by the recombina-
tion of carriers injected across a p − n junction[2,3]. The
semiconductor lasers have a wide range of applications in
the optical-fiber communication and the optical memory
(audio and video discs) industry[4−9]. Evaluating theo-
retically the semiconductor gain coefficient is significant
for semiconductor laser. In studies[3−5] the authors have
discussed the main properties of the semiconductor laser
and provided the background for constructing useful the-
oretical models. Therefore, accurate evaluation of semi-
conductor gain is important in different areas of science.
For evaluating the semiconductor gain, a generalized op-
tical gain coefficient is obtained, which may be written
in terms of the optical gain functions. Although the the-
oretically evaluation of optical gain coefficient has been
in literature[10−26] for a long time, there has been no ac-
tual analytical evaluation attempt so far.

In this letter, we will deduce the analytical expression
of the semiconductor laser optical gain function. The re-
sults allow a direct evaluation of the dependence of semi-
conductor gain on the total carrier density and tempera-
ture. Moreover, the formulas can be easily implemented
with an algebraic computer language. The results are
compared with those obtained according to one of the
Mathematica numerical integration results. As an ex-
ample of the effectiveness of the method we present the
calculation results of the optical gain of the GaAs.

The theoretically evaluation of semiconductor lasers
properties have been analyzed based on the Free-Carrier
theory and the Fermi-Dirac distributions[3−5]. The use
of the Free-Carrier theory and the Fermi-Dirac distri-
butions gives the following relation for the optical gain
coefficient[2,4]:
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where n is refractive index, γ is homogeneous line width
factor, mr is the reduced mass, and the energy-dependent
Fermi-Dirac distribution is given by
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where β = 1
kT , µα is the carrier quasi-chemical potential,

where α ≡ v and e for the electrons and valance band.
Taking into account Eq. (2) in Eq. (1), generally we can
rewrite Eq. (1) in the following form:
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The quantity Q occurring in Eq. (3) are semiconductor
gain function generally defined as

Q(p, q, r, s) =

∞
∫

0

√
x

[p2 + (x − q)2](erx + es)
dx. (4)

Quantum statistical theory of semiconductor gain re-
quires the more accurate evaluation of semiconductor
gain function because they are very sensitive to the mi-
nor errors. In order to establish expressions for the
semiconductor gain functions we shall first consider the
well known binomial expansion theorems as follows (x >

y)[27,28]:
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where Fm(n) are binomial coefficients defined by
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Inserting Eq. (5) into Eq. (4) we obtain the series ex-
pansion formulae for the semiconductor gain functions in
terms of binomial coefficients:
for q > p > 0

Q(p, q, r, s) = lim
L→∞
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L
∑

i=0
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for p = 0 and q = 0

Q(p, q, r, s) = lim
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Q(p, q, r, s) = lim
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The quantities Km(p, q, r) in Eq. (9) determined by the
relation

Km(p, q, r) =

∞
∫

0

√
x e−mrx
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dx. (10)

For particular values of parameters for which the
Q(p, q, 0, 0) and Km(p, q, r) functions exists in Eqs. (3)
and (9), the program Mathematica gives the following
results, respectively:
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where i =
√
−1. The quantities Γ (α) and Erfc(x) in

Eqs. (7) and (12) are well known familiar functions
defined by[27]

Γ (α) =
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0

tα−1e−tdt, (13)
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2√
π

∞
∫
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In Eqs. (5), (7), (8), and (9) the indices N, L, L′, and
M are the upper limits of summations.

An approach for the analytical evaluation of optic gain
function has been derived and implemented. By using
the binomial expansion theorem, we obtained an exact
closed-form expression of the optic gain functions and the
expression is written in terms of the binomial coefficients
and incomplete Gamma functions. All calculations were
performed on Mathematica 7.0 supporting programming.
The desktop computer with typical configuration, Pen-
tium, Intel (R), 2.20 GHz, 1.0 GB RAM, was utilized.
The results are listed in Table 1. To verify the represen-
tations that we obtained for various cases, we compared
the results of the new formulations with the results of
a direct Mathematica numerical integration technique.
As can be seen in Table 1, the values of the optic gain
function calculated with these two analytical and nu-
merical methods are in very good agreement. Using the
new decomposition the obtained results are presented
in Table 2 to demonstrate the improvements in conver-
gence rates. Greater accuracy is attainable by the use
of more terms in expansions of Eqs. (7) and (9). Thus,
the performanceof the present formulations for optic gain
functions is satisfactory for s < 0. In this letter, for the
first time to our knowledge, we calculate the semiconduc-
tor optical gain coefficient analytically for all parameters
satisfying Eqs. (7) and (9).

As an application, the results of the optical gain cal-
culation are shown in Fig. 1 for GaAs semiconductor.
The best fitting procedure is performed at room temper-
ature and the curve obtained with the parameters values

Table 1. Comparative Values of Q(p,q,r,s) Semiconductor Gain Functions for L = M = 80

p q r s Eqs. (9) and (11) Mathematica Numerical Integration Results

5.2 2.6 4.5 -0.2 2.3057521070563379 ×10−3 2.305752106867286 ×10−3

8.5 2.4 3.5 -0.6 1.5097886898999967 ×10−3 1.5097886898999967 ×10−3

12 11 10 -0.6 9.10083926534021059 ×10−5 9.10083926534021059 ×10−5

18.5 12.4 13.5 -0.8 3.157447704385142307 ×10−5 3.157447704385142307 ×10−5

23.8 15.2 15.6 -0.9 1.596134880624276426 ×10−5 1.596134880624276426 ×10−5

25.2 22.6 21.5 -0.95 6.897020295591316584 ×10−6 6.897020295591316584 ×10−6

8.5 6.7 0.0 0.0 1.09401105037167612 1.0940110503716761

18.5 16.7 0.0 0.0 0.77469039032834205 0.7746903903283421

31.8 41.6 0.0 0.0 0.67714915904714389 0.6771491590471439

31.8 22.6 14.5 -0.4 8.164666180471492413 ×10−6 8.164666180471492413 ×10−6

43.1 32.2 24.1 -0.45 2.1522973435973320475 ×10−6 2.1522973435973320479 ×10−6
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Table 2. Convergence of Derived Expressions Eqs. (7) and (9) for Q(p, q,r, s) as a Function of Summation
Limits L = M

L = M p = 41.8; q = 33.4; r = 26.1; s = −0.6 Eq. (9) p = 18.4; q = 13.6; r = 11.8; s = −0.06 Eq.(7)

10 1.987636228528209097 ×10−6 3.37136295616455221 ×10−5

20 1.974109572306391665 ×10−6 3.36684346718376754 ×10−5

30 1.973963204675267484 ×10−6 3.36666840550732733 ×10−5

40 1.973961614618339203 ×10−6 3.36665859387207483 ×10−5

50 1.973961597327549767 ×10−6 3.36665794716173479 ×10−5

60 1.973961597139384618 ×10−6 3.36665790045493919 ×10−5

70 1.973961597137335525 ×10−6 3.36665789687768251 ×10−5

80 1.973961597137313196 ×10−6 3.36665789659226324 ×10−5

Fig. 1. (Color online) Optical gain (g) dependence of the en-
ergy (~δ). The solid line represents the numerical results,
and the thick dashed line is the fitting line by the analytical
method for γ = 1012 s−1. The curves are for homogeneous line
width factors γ = 2 × 1012 (black solid) and 1013 s−1 (black
dashed).

ν = 109 s−1; ~ = 6.58.10−16 eVs; γ = 1012 s−1;
n = 3.6; c = 1018 As−1; me = 0.066m0; mr = 0.056m0;
mh = 0.52m0; µe = −1.17 eV; µv = −0.27 eV; Eg =
−1.43 eV; kT = 0.025 eV. Figure 1 show that the peak
optical gain decreases with the increasing of γ homo-
geneous line width factors value. The close agreement
between analytical and numerical values seems to give
rise to more reliability of our obtained formulae.

In conclusion, we introduce a new analytical formula
for calculation of the optical gain in semiconductor lasers.
The newly derived analytical expression for the semicon-
ductor optical gain coefficient well avoids the computa-
tional difficulties.
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