COL 12(2), 023401(2014)

CHINESE OPTICS LETTERS

February 10, 2014

Pseudo-global tomography for local micro-computed
tomography with high-brightness synchrotron X-rays

Wenhao Chen (KX %)%, Yudan Wang (£ %4)!, Huiqiang Liu (2 £3&)', Biao Deng (%% &),
Yushuang Yang (# %%)*, and Tiqiao Xiao (& ##)H2*

!Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics,
Chinese Academy of Sciences, Shanghai 201204, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3CSIRO Materials Science and Engineering, Private Bag 33, Clayton South, Victoria 3169, Australia
*Corresponding author: tqxiao@sinap.ac.cn
Received July 26, 2013; accepted December 12, 2013; posted online January 23, 2014

The computed tomography imaging of a local region inside a sample with a size larger than the field of view
is particularly important for synchrotron X-ray imaging. In this letter, an improved algorithm is proposed
to reconstruct the local structure inside a sample using almost completely local data. The algorithm
significantly reduces the X-ray radiation dose and improves computational efficiency. Simulation results
show that the new algorithm works well and has a higher reconstruction precision than previous methods,
as confirmed by experimental results carried out at the Shanghai Synchrotron Radiation Facility.
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Synchrotron radiation (SR) computed tomography (CT)
is an effective, sample, non-destructive, cross-sectional
imaging tool with wide-ranging applications in medicine,
biology, and industry!™?. Nevertheless, the detector has
a limited field of view (FOV) because of current hardware
limitations(®!. The CT imaging of a local region inside
a sample with size larger than the the FOV is particu-
larly important for synchrotron X-ray imaging to achieve
high resolution while maintaining sample integrity. How-
ever, the conventional filtered back projection (FBP) al-
gorithm is inadequate for correctly reconstructing local
CT projections because of its nonlocal property!®.

Several approaches have been proposed to solve the
local CT reconstruction problem. However, some of
these algorithms only work well at the jumping points
of the original density function!*®; some require ex-
tra knowledgel9—8! that make them difficult to imple-
ment; others require projections to be extrapolated!9:10].
To date, an optimized extrapolation method for high-
precision reconstruction is lacking.

In this letter, an improved algorithm aimed at overcom-
ing the abovementioned shortcomings of available meth-
ods is proposed. The algorithm uses an effective strat-
egy to compensate for the lost part of projections in a
local CT, which can effectively reduce DC shift and low-
frequency artifacts caused by projection truncation. The
new algorithm reconstructs the correct inner structure of
the sample throughout the entire region of interest (ROI)
without prior knowledge of it. Moreover, only the ROI
instead of the entire sample is reconstructed, which im-
proves computational efficiency.

Using the Fourier slice theorem!'!] f(z) can be recov-
ered from values of its Radon transform through Radon’s
celebrated classical formula
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where F,(t) is the average of all integrals of f over
lines apart from point x with distance ¢, leading to the

relation(!2!
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where * means convolution, ®. is a positive radial kernel,
O (z) = e720(w/e), B(x) = x(|z])/(x? |2 \/|2]* = 1),

_fo ifj <t
and X<t)—{1 if [t > 1.
the basis for localized reconstruction from Radon trans-
formed data. Defining ¥(z) = 4®(2z) — ®(x), x € R?,
then according to Eq. (2),

\I/*f(a,x)zklla*f(;v):_%/; sz(t)' (3)

Equation (2) can be used as

For any positive ¢, we have

As long as j is sufficiently large, W * f(2’¢, ) contains
mainly low-frequency information('? that could be ig-
nored remaining sufficiently high reconstruction preci-
sion. Thus, we can use the projections on lines passing
through the region of exposure (ROE, which is ROI plus
an extra margin) to reconstruct the ROL.

Focus is then given to the width of the extra margin.
Through the convolution theorem, Eq. (1) can be rewrit-
ten as

f(z) _/Oﬁ /jo RF(0,1) x h({z,ug) — t)dtdd,  (5)

where ug = (cos0,sin @), (x,ug) is the usual scalar prod-
uct of = and ug, Rf(0,t) is the integral of f over lines
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that are ¢ apart from the original point at angle 6, and
h is the convolution kernel. In practice, the convolution
kernel h can be expressed as!!!!

1/(4d®>) m=0
h(md) =<0 m = even , (6)
—1/(mdm)? m = odd

where m is an integer, and d is the sampling interval of
the projected images that equals the pixel size. In local
CT reconstruction, the poorest deviation occurs at the
margin of the ROI nearest to the lost parts of the pro-
jections. From the convolution given by Eq. (5), this
deviation could be attributed to h(md), which has a part
outside the FOV. To evaluate the influence of this part
of h, denoting the part of h(md) outside the FOV as
m € (—oo,—n) U (N,+00), the energy leakage of h is

defined as

sy = 3 hmd)l/ Y |h(md) + Y |h(md)|/
m=—oo m=—oo m=N
S Jh(md)l, (7)

where N is a large number, and the second term on the
right side of Eq. (7) is very small and can be ignored. In
this letter, if s < 0.01, we believe that the influence of
the part of h outside the FOV can be ignored. According
to Eq. (7), the energy leakage is less than 0.01 when n >
9, indicating that the width of the ROI’s extra margin
should be no less than 9 pixels. Accordingly, the ROE
in this letter is defined as ROI plus an extra margin of
10 pixels. Compared with conventional CT requiring the
entire sample in the ROE, the X-ray radiation dose is
significantly reduced.

CT reconstruction from a truncated sinogram is known
to generally lead to artifacts in slice in the form of a global
(i.e., feature independent) elevation of the gray values
toward the edge of the reconstructed ROI3!. This kind
of artifacts is due to the loss of low-frequency informa-
tion that can be suppressed by projection extension!4.

Fig. 1. Example of a projection Py(t). The solid and dashed
lines show the truncated projection and extended part, respec-
tively. The solid ellipse shows the simulated configuration of
the sample including the ROE (solid circle, which is the ROI
(dashed circle) plus 10 more extra pixels), which generally
does not exceed the wrap of the sample (dashed ellipse). The
gray irregular area shows the actual sample shape.

In this letter, an elliptic projection extension method is
proposed, as shown in Fig. 1. The ellipse is generally very
close to the actual shape of samples. Thus, the difference
between the ellipse and real sample shape can be con-
trolled to the least value, which usually occurs around
the margin and normally far from ROI. According to the
previous analysis, the effect of lost projections could be
ignored when it is far from the ROI. The choice of the
elliptic long half-shaft and short half-shaft depends on
the length and width of the sample. The extended parts
of the projections should be continuous at the ends of
the truncated projections, and the value of the extension
is proportional to the path length of X-ray inside the el-
lipse. According to the geometry mathematics in Fig. 1,
the projection extension is given as

P (t—scos(y—0))
Pz_a(r— scos(y—¥0)) Po(r)
Py(t) t<r

P} (t—scos(y—6))
Pj_ (—r—scos(y—#0)) Po(=r)

t>r

By (t) =

t<—r

(8)
where r is the radius of the FOV, Py(t) is the truncated
projection we obtain, Py(t) is the path length of X-ray
that is perpendicular to distance ¢ away from the original
point at projection angle €, which can be expressed as

2AB\/ A2 cos? 0 + B2 sin® 0 — 2
A2 cos? 0 + B2?sin® 0
[t] < VA2 cos? 0 + B2sin? 6 5 (9)
0
|t| > /A2 cos? 6 + B2sin® 6

Py(t) =

where s = /22 +y?, v = tan"!(y1/z1), (z1,y1) is the
center of the ellipse and the original point is the center
of the FOV, and « is the angle between the long shaft of
the ellipse and the X-axis.

For the special case, i.e., where the density distribu-
tion inside the sample is annular, the density at different
annuli differ from one another and result in a sudden
increase or decrease among the different parts of a pro-
jection. Accordingly, Eq. (9) can be rewritten as

i cP)_,(t —scos(y —0))
=1 nby_(r — (k= 1)d — scos(y — 0))
Py(r — (k- )d) t>r
Py(t) =< Po(t) [t < :
i cPe_a(t — scos(y—0))
= W (—r+ (K~ 1)d—scos(y — )
Py(—r+(k—-1)d) t<-—-r

(10)
where ¢ is a constant and ¢ > 0, n > 1, d is the sampling
step in the projected image, and 0 < (n 1)d <r.

The Shepp-Logan head phantom (256 x256) is adopted
as the test phantom. Two different ROIs are selected
for the simulation, as shown in Fig. 2(a). A total of
360 local projections are generated during the simulation
with an angle sampling step of 0.5°.
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Fig. 2. Phantom and reconstructed ROIs (65 x 65 pixels).
(a) Phantom, with the white circles indicating the ROISs; (b,
g) images reconstructed by global CT with global projections;
(c, h) pseudo-global tomography; (d, i) pseudolocal tomogra-
phy; (e, j) A-tomography; (f, k) notoptimized FBP.
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Fig. 3. Intensity profiles along the vertical central lines
through the ROIs shown in Fig. 2, where the profiles for
ROI1 (a) and ROI 2 (b) are given.

Figure 2 shows the ROIs reconstructed by different lo-
cal algorithms. For comparison, ROIs from global re-
construction are also given. The ROIs reconstructed
by pseudo-global tomography are obviously very close
to that reconstructed by global CT, whereas the images
from pseudolocal tomography and A-tomography do not
work well in smooth areas. The images from the notop-
timized FBP tomography!?! (using FBP method to per-
form local reconstruction requiring projection extension;
“notoptimized FBP” means this local method’s projec-
tion extension is not optimized) have an apparent image
distortion at the margin. To more clearly visualize the
details, the central vertical intensity profiles of the ROIs
shown in Fig. 2 are displayed in Fig. 3. All profiles of
pseudo-global tomography at all areas are reconstructed
with relatively high precision, but a constant deviation
occurs. For the other local algorithms, a clear distortion
is observed.

To quantitatively evaluate the similarity between the
global and local CTs, the normalized cross correlation
(NCC)'5] is used. NCC is commonly used for image
analysis. The NCC between two different images (f and
t) of size m x n is defined by

5SS (£ ) =) - (4G, ) — )
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where py=3" > f(i,5)/(m-n) and p, = 3> 3~ t(i, )/

i=1j=1 i=1j=1
(m -mn). The NCC is confined between —1 and +1. A
larger NCC indicates a higher similarity between the two
images. Taking the ROIs from the global CT as the

references, the NCCs for the ROIs from the local CT
algorithms are given in Table 1.

Table 1 shows that the highest reconstruction preci-
sion could be achieved using the proposed algorithm, in
accordance with the abovementioned analysis. Table 1
also shows that pseudo-global tomography works well for
different sample areas, whereas the precision differs from
one another for different ROIs in the other methods.

The experiments were carried out at the X-ray imaging
beamline BL13W at the Shanghai Synchrotron Radia-
tion Facility, as shown in Fig. 4(a). Figure 4(b) is the
schematic of the local tomography. The effective pixel
size of detector is 3.7 x 3.7 um?. A phantom is specially
designed for the experiments, in which the outermost
layer is a polyamide-Nylon6 (PA6) tube with diame-
ter ¢out = 2.77 mm, ¢i, = 1.87 mm, the interlining is
a polytetrafluoroethylene tube with ¢oye = 1.82 mm,
¢in, = 1.0 mm, and the middle part is 14 pieces of PET
filaments with ¢ = 0.1 mm.

In the experiments, the X-ray photon energy was set to
14.5 keV, and 720 projections of the entire sample over a
total rotation angle of 180° were collected at 0.25° angu-
lar step. A reconstructed slice of the sample is shown in
Fig. 5(a). Similar to that in simulation, two character-
istic regions were chosen as ROIs. The local projections
of the ROIs were obtained by truncating the full projec-
tions of the entire sample. Figure 5 presents the ROIs
reconstructed from different local CT algorithms. The
simulation results given in the previous section could be
confirmed by experiments. The ROIs from the pseudo-

Table 1. NCCs of ROIs for Different Algorithms

ROI Pseudo- Pseudolocal A-tomography Notoptimized
global FBP

ROI1 0.9992 0.9423 0.6239 0.9421

ROI 2 0.9992 0.9693 0.8199 0.8518

Y ~£¥‘ (b)

S

Fig. 4. Experimental facilities at the Shanghai Synchrotron
Radiation Facility BL13W beamline and schematic of the lo-
cal tomography.

not optimized
FBP

global pseudo-global pseudolocal A-tomography

Fig. 5. Experimental results for the phantom, where (a) is
the global CT slice for the entire sample in which the two
ROIs are indicated; (b) and (g) show the ROIs taken from
global reconstruction with 258 x 258 pixels; the other slices
are taken from pseudo-global tomography (c, h), pseudolo-
cal tomography (d, i), A-tomography (e, j), and notoptimized
FBP (f, k).
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global tomography are the closest reconstruction to the
global tomography. The ROIs from pseudolocal tomog-
raphy and A-tomography lose most of the information
in smooth areas. Image distortion is easily observed in
ROIs from the unoptimized FBP in the margin.

The reconstructed intensity profiles from local tomog-
raphy are given in Figs. 6(a) and 6(c), in which the
correspondent profiles from global CT are also given
for reference. To compare the precision of all local CT
methods, intensity deviations from the global CT are
also presented in Figs. 6(b) and (d). Obviously, pseudo-
global tomography could work well and achieve good
reconstruction precision at all regions inside the ROIs.
A constant bias to the global CT occurs for the pseudo-
global tomography, which is inevitable in the local recon-
struction using inverse Radon transformation!'®!. Using
a known material to calibrate the reconstruction, this
local CT method can still be used for quantitative X-ray
imaging. Similar to that in simulation, NCC is also given
to evaluate the accuracy of the reconstructions, as shown
in Table 2. The experimental results in Table 2 confirm
the above analysis based on simulation, which shows that
pseudo-global CT has better precision at different kinds
of ROL

In conclusion, an improved algorithm called pseudo-
global tomography is developed to reconstruct the ROI
in a sample with essentially local data. Numerical simu-
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Fig. 6. (a, c¢) Intensity profiles along the horizontal central
lines through the ROIs, as shown in Fig. 5 and (b, d) the
deviations of intensities from the local tomography to that
from global tomography.

Table 2. NCC of ROIs for Different Algorithms in
the Experiments

ROI Pseudo- Pseudolocal A-tomography Unoptimized
global FBP

ROI1 0.9999 0.9129 0.8411 0.9543

ROI 2 0.9999 0.8896 0.7681 0.9895

lation and experiments are carried out to evaluate the va-
lidity and efficiency of the proposed algorithm. Results
show that the new local CT method works well and has
high reconstruction precision regardless of the location
of the ROI in the sample. The non-uniqueness of the
interior problem leads to the inevitable existence of a
constant bias in the reconstructed ROI image. However,
this bias could be corrected through a calibration pro-
cess by introducing a known material. In this way, the
proposed pseudo-global tomography could still be used
for quantitative CT imaging. Combining with other
advantages, the proposed pseudo-global algorithm for
local tomography could find its extensive applications in
biomedical and material sciences.
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