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Mode characteristics of nano-width rectangle resonator
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A new method based on Maxwell’s equations, ABCD ray matrices, and total internal reflection is proposed
to theoretically analyze the characteristics of eigenmodes confined in nano-width rectangle resonators.
Using this method, mode wavelengths and indices of transverse and longitudinal modes are obtained.
Another method based on the finite difference time domain technique and Padé approximation is used
to numerically calculate resonant wavelengths, mode field distributions and quality factors. The results
of two methods show that the resonant wavelengths obtained from both methods are very close, and the
maximum relative error is less than 2%. The mode indices of transverse and longitudinal modes obtained
agree well with mode field distribution patterns calculated by finite difference time domain techniques.
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Optical micro-resonators have attracted great atten-
tion for their advantages of ultrasmall cavity volume
and high quality factors (Q-factors) and applications
in photonic integrated circuits such as optical add-drop
filters, sensors and microlasers of ultra-low-threshold
operation[1−7]. Recently, nanocrystalline Cr2+-doped
ZnSe nanowires have been fabricated using femtosecond
laser ablation in our lab and mid-infrared oscillation at
2194 nm has been established[8]. The nanowires were
usually 30-120 nm in diameter and several tens of mi-
crometers in length. What is more interesting is the phe-
nomenon that Cr2+-doped ZnSe nanowires laser showed
a 150-nm shift to shorter wavelengths in comparison with
the bands of microsized powder random laser. All these
experiments activate researchers to investigate the op-
erating mechanism and mode characteristics of micro-
cavites. Microcavities shaped with circular[9], ring[10,11],
square-shaped[12], and equilateral resonator[13,14] have
been studied. Especially for microcavity lasers with
equilateral resonator, a great deal of research work
has been devoted including eigenmodes[15−17], mode
distributions[18,19], and Q-factors[20−22].

In this letter, the three-dimensional (3D) nanowire was
simplified as two-dimensional (2D) nano-width rectangle
resonator (NWRR). A new method based on Maxwell’s
equations and ABCD ray matrices combined with total
internal reflection (TIR) was proposed by studying the
modes characteristics of NWRR. Analyses of mode wave-
lengths and mode indices of transverse modes and lon-
gitudinal modes confined in the NWRR were presented.
In order to verify the analysis, we calculated the mode
frequencies, Q-factors, and mode field distributions us-
ing finite-difference time-domain (FDTD) technique and
Padé approximation. NWRR with widths of 0.1, 0.3,
and 0.5 µm and length of 5 µm was selected to analyze
and calculate. The results show that the resonant wave-
lengths and mode indices obtained from analytical results
agree well with those obtained from FDTD results. The
maximum relative error of wavelengths is less than 2%.
For the NWRRs with widths of 0.1 and 0.3 µm, only fun-
damental modes exist. When the width is increased to
0.5 µm, higher order modes appear. For the fundamen-

tal modes, the interval number of peaks in mode field
distribution patterns is exactly equal to the indices of
longitudinal mode and patterns are distributed on the
centerline. For higher-order mode, patterns shift deviat-
ing from centerline and keep centrosymmetric along the
centerline. Also the results that Q-factors increased with
widths were proved. The unique properties of NWRR
make it is very attractive to apply it to micro-devices
with some special arrangements.

To analyze the mode characteristics for NWRR, the x-
z coordinate systems were chosen, as shown in Fig. 2,
with the z-axis parallel with the long side and the x-axis
parallel with the short side. The length of NWRR is
l, the width is d, and the refractive index is n. Based
on the Maxwell’s equations, the time-independent wave
equation is obtained as

∇2 ~E + n2k2
0
~E = 0, (1)

where k0 = 2π/λ0 is the free space wave number, λ0 is
the mode wavelength. For NWRR, the modes consist
of TE and TM modes. We begin with the derivation of
the TE modes. Only the following field components are
nonzero: Hz , Hx, and Ey. Using Maxwell’s equation, Hz

and Hx can be expressed in terms of Ey. Ey component
is obtained as a solution of Eq. (1), which is

Fig. 1. (Color online) Graphical solution of the eigenvalue
equation for TE mode. Blue lines and pink lines are for even
and odd TE modes, respectively.
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Fig. 2. (Color online) Scheme of light propagation in NWRRs.

∂2Ey

∂x2
+ (n2k2

0 − β2)Ey = 0, (2)

where β is the propagation constant along the z-axis.
The solution of Eq. (2) is always complex. Here we sim-
plify the mode analysis by considering the even and odd
solutions of eigenvalue equation separately.

First we consider the even TE modes. A general solu-
tion of Eq. (2) is of the form

Ey =

{

A cos(κx), for |x| 6 d/2
Be[−γ(|x|−d/2)], for |x| > d/2

. (3)

From Eqs. (2) and (3), we can get

κ2 + γ2 = (n2 − 1)k2
0 . (4)

Considering the continuity of Ey and ∂Ey/∂x at the
interface of |x|=d/2, we obtain the eigenvalue equation:

γ = κ tan(κd/2). (5)

A similar analysis can be carried out for the odd TE
modes with the only difference that cos(κx) in Eq. (3)
is replaced by sin(κx). The application of the boundary
conditions now yields

γ = −κ cot(κd/2). (6)

Equation (4) describes a circle in the κ − γ plane, and
its intersection with the curves obtained using Eqs. (5)
and (6) yields κp and γp values for the p-th TE mode.
Multiple solutions occur because of the periodic nature of
trigonometric functions. The number of allowed modes
can be determined by noting that a solution is no longer
bounded if γ 60 since it leads to an exponential growth
of field distribution Ey. The cut-off condition is thus
determined by γ = 0. Setting γ = 0 in Eqs. (4)–(6), the
number of TE mode p can be obtained as

p =
k0d

√
n2 − 1

π
=

2d
√

n2 − 1

λ
. (7)

We draw the curves in the κ − γ plane which are ob-
tained using Eqs. (4)–(6), as shown in Fig. 1. The solu-
tions are obtained at the intersections among the curves,
which are the values corresponding with the intersection
points A, B, C, and D. From it, we can obtain the number

of mode solutions is mainly determined by the refractive
index n, the width d, and the wavelength λ0 which is
characterized by k0. For decreasing the wavelength, this
point moves to larger value of κ and as a result more
mode solutions occur. Similar analysis can be carried
out for the dependence of mode solutions number on n
and d. The figure also shows the lowest order even TE
mode can propagate at arbitrarily small frequency. It is
the only mode that is never cut off.

The TM modes are obtained by setting Hz=0. The
only nonvanishing filed components are Ez , Ex, and Hy.
The two electric components can be expressed in terms
of Hy component. The Hy component is obtained as a
solution of the reduced wave equation:

∂2Hy

∂x2
+ (n2k2

0 − β2)Hy = 0. (8)

The continuity of Hy and ∂Hy/∂x at the interface of
|x| = d/2 requires that B=Acos(κd/2). With the equa-
tion Ez=−i/(n2ωε0)·(∂Hy/∂x), following expression can
be obtained as

Ez =











iAκ

n2ωε0
sin(κx), for |x| 6 d/2

iBγ

ωε0
e[−γ(|x|−d/2)], for |x| > d/2

. (9)

The eigenvalue equation is obtained from the require-
ment that Ez remain continuous at |x| = d/2. We obtain
the eigenvalue equation:

tan
κd

2
= n2 γ

κ
. (10)

The analysis of odd TM modes is similar except that
sin(κx) in Eq. (9) is replaced with –cos(κx). Then we
obtain

cot
κd

2
= −n2 γ

κ
. (11)

In NWRR, mode field is confined in resonator by to-
tal internal reflection (TIR) which requires the incident
angles to be greater than or equal to the critical angle.
Based on the light ray concept, we can obtain

min(θc, π/2 − θc) 6 arctan
κ

β
6 max(θc, π/2 − θc),

(12)

where function min() and max() are solving the mini-
mum value and maximum value in bracket, respectively.
θc is the critical angle, whose value is arcsin(1/n). With
the equation κ2 = n2k2

0 − β2, we can obtain

min(θc, π/2 − θc) 6 arctan
κ

√

n2k2
0 − κ2

6 max(θc, π/2 − θc). (13)

Here, we assume that θc and π/2−θc yield the inequal-
ity π/2 − θc > θc, which is always true in experiments.
Furthermore, we can get the requirement for TIR:

k0 6 κ 6 k0

√

n2 − 1. (14)

For analysis of longitudinal mode, ABCD ray matrices
were used to calculate the indices of longitudinal mode.
The scheme of light propagation in NWRR was shown
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in Fig. 2. The light propagates from (x0,z0), and after
a round trip of passing the points (x1, z1), (x2, z2),· · · ,
(xi−1, zi−1), (xi, zi), (xi+1, zi+1), (xi+2, zi+2), (xi+3,
zi+3),· · · , (xi+j−1, zi+j−1), (xi, zj), it returns (xi+j+1 ,
zi+j+1). θ is the degree between the direction of light
propagation and the z direction.

With the ABCD matrices, the relationship between
neighboring points of TIR on the long side of NWRR
satisfies

[

xm+1

zm+1

]

=

[

A
C

B
D

] [

xm

zm

]

, (15)

where m = 1, 2, · · · , i, i + 2, i + 3, · · · , i + j, i and j
is the times of total internal reflection at the interface
of |x| = d/2 of light propagating along the z direction,
respectively. From the figure, based on the light ray con-
cept, we can obtain

Mm =

[

A
C

B
D

]

=

[

−1
2 cot θ × (−1)m

0
1

]

.

(16)

[

xi

zi

]

= Mi−1 · · ·M2M1

[

x1

z1

]

. (17)

[

xi+j

zi+j

]

= Mi+j−1 · · ·Mi+3Mi+2

[

xi+2

zi+2

]

. (18)

Based on Eqs. (16)–(18), if we set the point (x0, z0),
then we can obtain the point (xi+j+1, zi+j+1) after a
round trip. To form constructive interference, xi+j+1 is
required to be equal to x0.

x1 = −d/2, z1 = (x0 + d/2) cot θ, (19)

xi+2 = −xi, zi+2 = 2l − d cot θ − zi, (20)

xi+j+1 = sign(xi+j)(d/2 − zi+j tan θ), zi+j+1 = 0.
(21)

Our goal is to solve the λp,m where subscripts p and
m are the transverse mode index and longitudinal mode
index of resonant wavelength, respectively. In the part
above, κp and βp are obtained, where subscript p is the
p-th solution of equations. Based on the approximation
θp=arctan(κp/βp), θp will be solved. Then we can calcu-
late the optical length lp in NWRR and the times ξp of
TIR on sides of |x| = d/2 which can be solved.

To obtain constructive interference, the phase delay
should be an integral multiple of 2π. Then we can obtain
the λp,m as following expression for TE mode:

2πnlp
λp,m

+ ξpϕp1 + 2ϕp2 = 2mπ, (22)

λp,m =
2πnlp

2mπ − ξpϕp1 − 2ϕp2
, (23)

where ϕp1 and ϕp2 are the phase mutation of TIR on long
side and short side of NWRR, respectively, which obey
the following expression:

ϕp1 = −2 arctan(
√

cos2 θp − 1/n2/ sin θp), (24)

ϕp2 = −2 arctan(

√

sin2 θp − 1/n2/ cos θp). (25)

Here length l of NWRR is 5 µm, refractive index n is
3.2, and width d is varying among 0.1, 0.3, and 0.5 µm.
The mode indices and wavelengths obtained are shown
in first column and third column in Tables 1, 2, and 3.
From the tables, when the widths are 0.1 and 0.3 µm,
only fundamental modes exist. While with width in-
creasing to 0.5 µm, higher-order modes begin to appear.
The number of transverse modes N is the sum of TE
even mode number Neven and odd mode number Nodd,
N = Neven + Nodd. Take the TE mode for example,
and set λ0 to be 1.5 µm. When width d is 0.1 µm, the
value of 2(n2 − 1)1/2d/λ is 0.405. Based on the graph-
ical solution of eigenvalue Eqs. (5) and (6), we can get
Neven =1, Nodd =0 and N =1. Only fundamental modes
exist. Similar calculations can be conducted to widths

Table 1. Resonant Wavelengths and Q-Factors for
NWRR with the Width of 0.1 µm for TE Mode

TE λ (µm) λ (µm) Relative Q-

Mode (FDTD) (Analysis) Error Factor

TE0,16 1.2543 1.2515 0.223% 39.87

TE0,15 1.3107 1.3146 0.296% 39.12

TE0,14 1.3725 1.3740 0.109% 34.86

TE0,13 1.4404 1.4390 0.097% 30.86

TE0,12 1.5197 1.5190 0.046% 28.73

TE0,11 1.6132 1.6087 0.279% 21.6

TE0,10 1.7134 1.7077 0.333% 19.01

TE0,9 1.8332 1.8290 0.229% 17.77

Table 2. Resonant Wavelengths and Q-Factors for
NWRR with the Width of 0.3 µm for TE Mode

TE λ (µm) λ (µm) Relative Q-

Mode (FDTD) (Analysis) Error Factor

TE0,23 1.2395 1.2602 1.670% 84.93

TE0,22 1.2882 1.3056 1.350% 77.63

TE0,21 1.3409 1.3544 1.812% 71.03

TE0,20 1.3907 1.4070 1.001% 67.66

TE0,19 1.4564 1.4639 0.515% 64.77

TE0,18 1.5197 1.5255 0.184% 62.67

TE0,17 1.5936 1.5926 0.063% 61.52

TE0,16 1.6750 1.6658 0.549% 55.28

TE0,15 1.7594 1.7461 0.756% 54.13

TE0,14 1.8592 1.8345 1.329% 50.75
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Table 3. Resonant Wavelengths and Q-Factors for
NWRR with the Width of 0.5 µm for TE Mode

TE λ (µm) λ (µm) Relative Q-

Mode (FDTD) (Analysis) Error Factor

TE2,27 1.3160 1.3102 0.441% 82.60

TE1,26 1.3710 1.3788 0.569% 95.97

TE2,26 1.4278 1.4110 1.177% 65.57

TE1,25 1.4928 1.4891 0.248% 85.89

TE0,18 1.5604 1.5337 1.711% 64.74

TE1,23 1.6384 1.6530 0.891% 62.93

Fig. 3. (Color online) TE mode spectral distribution of
NWRRs with width of (a) 0.1, (b) 0.3, and (c) 0.5 µm, re-
spectively.

of 0.3 and 0.5 µm, and the vualues of 2(n2 − 1)1/2d/λ
are 1.216 and 2.026, respectively. After an exact solution
of equations, we can obtain for d = 0.3 µm, Nenen = 1,
Nodd = 0, N = 1 and for d = 0.5 µm, Nenen = 2,
Nodd = 1, N = 3. What is more, in Tables 1 and 2, the
indices of fundamental longitudinal mode are varying
continuously while in Table 3 the indices are complex.
To some extent, this is similar to the traditional laser
resonator.

The mode wavelengths, Q-factors and mode field
distributions are numerically calculated by FDTD
technique[23] and Padé approximation[24]. Parameters
of NWRRs are the same with those of theoretically
analyses. The intensity, wavelength and pulse time of
pumping sources are the same. The spectral distribu-
tions of different widths for TE mode are plotted in Fig.
3. The transverse and longitudinal mode indices are ob-
tained by comparing with the analytical wavelength in
Eq. (23). From Fig. 3, we can see the spectral inten-
sity and Q-factor in Fig. 3(c) are obviously larger than

Fig. 4. (Color online) TE mode field distribution of resonant
wavelengths of NWRRs with width of 0.1 µm. (a) TE0,14

mode (λ = 1.3725 µm); (b) TE0,13 mode (λ=1.4404 µm); (c)
TE0,12 mode (λ=1.5197 µm).

those in Figs. 3(a) and (b), which indicates that the
losses for larger width of NWRR are smaller. Here, the
Q-factor is defined as Q = fp,m/∆f , where fp,m is the
frequency corresponding with the λp,m and ∆f is the –3
dB bandwidth. The mode wavelength λp,m is from the
local maximum.

We summarized the relationships of mode indices,
wavelengths and Q-factors obtained from FDTD and
analysis results for TE mode as shown in Tables 1, 2,
and 3. The first, second, and third columns show the
mode indices, wavelengths calculated by FDTD tech-
nique, and wavelengths obtained by analysis results, re-
spectively. The Q-factors in forth column are calculated
from spectra. In Table 1, it can be seen that mode wave-
lengths obtained from FDTD technique and analytical
results are very close and the relative error is small. It
is worthy noticing that the relative errors around 1.5 µm
are smaller than others, which is because the wavelength
is set to 1.5 µm in analyses. Same conclusions can be
obtained in Tables 2 and 3. In general, the maximum
relative error is less than 2% and with the width de-
creasing, Q-factors thereupon decrease. This is because
the energy of evanescent wave is more when the width is
smaller, which makes the Q-factors decrease.

Furthermore, we calculated the mode distributions of
resonant wavelengths for different widths by FDTD tech-
nique shown in Figs. 4–6. Based on the analyses above,
we know that Figs. 4 and 5 show the distributions of fun-
damental modes and it can be seen that the patterns are
mainly distributed on the centerline of NWRRs. And
the longitudinal indices of fundamental modes are just
equal to the interval number of peaks in mode field dis-
tributions. Take Fig. 4(a) for an example, the interval
number is 14, and the longitudinal index is 14. Same re-
sults can be obtained in Figs. 4(b)–(d) and Fig. 5. The
conclusions indicate that the theoretically analytical re-
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sults agree well with the numerically calculated results.
In Fig. 6, the modes consist of higher-order modes and
fundamental modes, and the mode distributions are obvi-
ously different. Figures 6(a)–(d) show the distribution of

Fig. 5. (Color online) TE mode field distribution of resonant
wavelengths of NWRRs with width being 0.3 µm. (a) TE0,20

mode (λ=1.3944 µm); (b) TE0,19 mode (λ=1.4564 µm); (c)
TE0,18 mode (λ=1.5197 µm); (d) TE0,17 mode (λ=1.5936
µm).

Fig. 6. (Color online) TE mode field distribution of resonant
wavelengths of NWRRs with width being 0.5 µm. (a) TE1,26

mode (λ=1.3710 µm); (b) TE2,26 mode (λ = 1.4728 µm);
(c) TE1,25 mode (λ=1.4928 µm); (d) TE0,18 mode (λ=1.5604
µm).

TE1,26, TE2,26, TE1,25, TE0,18 mode, respectively. From
it, we can conclude that with transverse mode order in-
creasing, some peaks of mode patterns shift deviating
from centerline but keep centrosymmetric along the cen-
terline. This can be explained by ray optics qualitatively.
When transverse mode index gets larger, θ thereupon in-
creases, and as a result the patterns shift deviating from
centerline.

In conclusion, we analyze the mode characteristics
of NWRRs with the new method based on Maxwell’s
equations and ABCD ray matrices combined with total
internal reflection (TIR). We derive the wavefunctions,
eigenvalues, ABCD matrices and TIR, and solve the
mode wavelengths and mode indices of transverse modes
and longitudinal modes. In order to verify the analysis,
we calculate the mode frequencies, Q-factors, and mode
field distributions using FDTD technique and Padé ap-
proximation. The NWRRs with widths of 0.1, 0.3, and
0.5 µm and length of 5 µm are theoretically analyzed
and numerically calculated. The results show that the
resonant wavelengths and mode indices obtained from
analytical results agree well with those obtained from
FDTD results. The maximum relative error of wave-
lengths is less than 2%. For the NWRRs with widths of
0.1 and 0.3 µm, only fundamental modes exist. When
the width increases to 0.5 µm, higher-order modes ap-
pear. For the fundamental modes, the interval number of
peaks in mode field distribution patterns is exactly equal
to the index of longitudinal mode, and the mode distri-
bution patterns distribute on the centerline of NWRRs.
For higher order modes, the patterns shift deviating from
centerline, but keep centrosymmetric. The unique prop-
erties of NWRR make it is very attractive to be applied
to micro-devices with some special arrangements.
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National Natural Science Foundation of China (No.
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