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Detecting and tracking maneuvering dim targets is the 
focus of infrared sensors data processing. Track-before-
detect (TBD) algorithms use the entire output without 
information loss, avoiding the typical measurement pre-
threshold and data association, which gain better detec-
tion performance than the classical detect-before-track  
methods.

Boers et al.[1] proposed particle filter (PF) for TBD, 
which has been proved by Davey et al.[2] to outper-
form histogram probability multi-hypothesis tracking  
(H-PMHT)[3,4] and probabilistic data association (PDA)[5]  
regardless of computation cost. And it is extended 
for two targets based on sequential likelihood ratio 
testing (SLRT) of three hypotheses[1,6]. However,  
the number of targets present is unknown and  
even time variant. Then it should be modified by com-
posite multi-hypothesis testing or heuristic searching, 
which is complex and time-consuming. Pertilä[7] pre-
sented an improved algorithm based on PF for multiple 
targets. However it is assumed that there is not more 
than one target appearing or disappearing simultane-
ously. So the improved algorithm is not suitable when 
more than one target appear or disappear. Morelande 
et al.[8] detected and tracked targets by the computa-
tion of the joint multi-target probability density. The 
algorithm seems to detect and track unknown num-
ber of targets. Buzzi et al.[9] proposed a Viterbi-like 
algorithm based on generalized likelihood ratio test 
(GLRT) and extended it for multiple targets with 
known target number Nk at time step k via dynam-
ic programming and an equivalent minimum network 
flow optimization. It should be solved by composite 
multi-hypothesis testing[9] for multiple targets with Nk 
unknown. And it is extended in the context of space-
time adaptive processing[10] without the incorporation 

of the target kinematics. A one-step GLRT-based de-
tector for varying scenario and ad hoc detectors for 
both stationary and varying scenarios are derived and 
further extended for bistatic sonars[11,12]. Although they 
could be extended for multiple targets with Nk un-
known by introducing composite multi-hypothesis test-
ing, it would become very complex and not work well 
when Nk are number varying and maneuvering. 

Probability hypothesis density (PHD) is proposed 
based on random finite set for tracking multiple tar-
gets[13], which can efficiently estimate the target 
number and state simultaneously. A sequential Monte 
Carlo-PHD (SMC-PHD) is designed by Vo et al.[14] and 
multiple model PHD (MM-PHD)[15] is presented conse-
quently for maneuvering targets. A SMC-PHD TBD-
based algorithm is proposed to track low-observable 
multiple targets[16]. Improved MM-PHD algorithms are 
proposed for detecting and tracking multiple targets 
with Nk unknown by Long et al.[17,18]. The algorithms 
are effective for maneuvering targets with varying Nk. 
However, the implementation of the algorithms is com-
plicated with large computation and both the birth 
and death time of targets are not accurately captured. 
Usually the data association should be implemented for 
tracking a continuous trace with low false alarm rate.

In order to detect and track multiple weak targets 
with Nk unknown and varying, we present an effective 
algorithm based on PF, which incorporates a filter for 
detecting new target and a second filter for tracking 
conformed targets. And optimization is conducted on 
the estimation of the target birth and death time and 
corresponding state in parallel with not only selectively 
sampling but also adaptive process noise.

Given the model of the target falls into the clus-
ter of constant velocity (CV), clockwise constant turn  
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(C-CT), and anticlockwise constant turn (AC-CT), 
the evolution of the target state is modeled as a linear 
Gaussian dynamic system:
	 ( ) ( )− −= +1 1X X X v ,i i

k k k kF � (1)
where the target state at time k is composed of five 
components referring to position and position rate in 
two directions along with the amplitude, which can be 
written as

	 X , , , , .
T

k k k k k kx x y y I =  � � � (2)

As depicted in Ref. [19], ( )iF  denotes the state dynamic 
function with superscript i representing the mode in-
dex, whose transition is modeled by a Markov chain 
with matrix .Π  Process noise vi

k  is Gaussian distrib-
uted with zero mean and covariance Q .i

k
For each cell of the infrared sensor, indexed by 

1,i W ∈    and 1, ,j H ∈    its amplitude under N tar-
gets in existence is modeled by 

	
( ) ( ) ( )( ) ( )

=
= +∑, , ,

1
Z X ,u n ,Ni j i j n i j

k k k k kn
h � (3)

where the noise ( ),i j
kn  independent between cells is 

Gaussian with variance s 2 and u ,x y
k k k

 = ∆ ∆   stands for 
imaging position errors on the focal plane array due to 
inaccuracy of the line of sight and the like. The contri-
bution to the cell (i, j) from the target n at time k is 
functioned as
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where Σ denotes the parameter for the point spread 
function. The peak signal-to-noise ratio (SNR) for the 
target written as SNRT is given by[2]

	
( )( ) ( )2

TSNR 20 log 20 log 2 .n
kI πσ= − Σ � (5)

However, the peak SNR for the pixel written as SNRP 
is given by 

	
( )( ) ( )2

P max,SNR 20 log 20 log 2 ,n
kI πσ= − Σ � (6)

where ( )
max,
n

kI  is the maximum energy in one cell when 

the target lies in the center of it and is given as
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PF-TBD for single target is settled through binary hy-
pothesis testing based on SLRT:

H0: no target
( ) ( ), ,Z n .i j i j
k k=

H1: target present:
( ) ( ) ( ) ( )= +, , ,Z X ,u n .i j i j i j
k k k k kh

The complete measurements at time k are given by
( ){ }= = =,Z Z 1 , 1 ,� �i j

k k i W j H  the likelihood ratio 

(LR) of which can be written as
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Given the spread of the target limited to several cells 
near the central target bin, LR is approximated by
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where ( )i kC X  and ( )j kC X  are the set of the cell indices 
spread by the target in the x and y dimensions, respec-
tively. According to Ref. [1], LR is characterized by the 
un-normalized weight of the particles: 

	 ( )( ) 1
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k k kl
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L q
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≈ ∑ � � (10)

where Np is the number of the particles.
Denote the measurements up to time k as 

{ }= 1 2Z Z ,Z Z .�k
k  For the independency of the mea-

surements at different time, the cumulative LR is
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where usually SLRT is adopted with fixed sample size 
(FSS) M as:
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Λ = ∏− = −� �
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The logarithmic form of the above formula is
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The target detection becomes
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where η0 and η1 represent the down and upper thresh-
olds, respectively, which are upon the target detection 
probability PD and false rate PF of the system. 
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Then
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According to Eq. (18), the logarithm of the cumula-
tive LR with N targets coexisting amounts to the sum 
of the logarithm of the cumulative LR with each one 
present. Therefore N PF-based detectors each for sin-
gle target can be built to detect and track N targets  
one by one on sequential LR testing. However the num-
ber of targets is unknown prior, we should build a de-
tecting filtering and a tracking filtering in application. 
The detecting filter iteratively captures the targets one 
by one, which starts up after a new target is captured. 
And the tracking filter maintains and updates the con-
formed targets. When capturing a new target, the par-
ticle of the detector is born on the constraint of the 
conformed targets state avoiding tracking the same.

In order to attain particles of high quality, the mea-
surements are pre-segmented by a threshold on the tar-
get SNRP. For the detecting filter, new particles are 
born selectively with positions uniformly distributed 
around the bins exceeding the threshold and the veloc-
ity under the maximum value vmax. And the sustaining 
particles for the tracking filter are updated at each time 
step. The number of the particles held through the re-
sampling step, after which those particles apart from 
the central state are deserted:
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where g is the gate to ensure that 95% of the particles 
from the target are kept.

The process noise is vital to the robustness of the 
algorithm. For the tracking filter, most of the particles 
converge around the target state. If the covariance of 
the process noise is too small, the particles predicted 
are expected to concentrate on the target state. Once 
the target state waves, the particles hardly cover it re-
sulting in the degeneration of the performance. Howev-
er, too large covariance leads a mass of barren particles 
apart from the target state. Given the covariance of the 
target state estimations Pk and Pk+1, the process noise 
covariance Qk is adopted as
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where Qmin and Qmax are the minimum and maximum of 
the process noise covariance.

For the detecting filter, the initial particles uniformly 
distributed convergence around the target through sev-
eral times of re-sampling. So the target detected time 
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For the detected target, when ( )( )FSSlog ZkΛ  falls below 
the threshold log(h0), it indicates the target disappear-
ance. The estimation of the target state and its covari-
ance follows: 
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where Xk,l is the state of the particle l at time k.
Interacting multiple mode  PF is successfully applied 

to track maneuvering weak target. The algorithm as 
developed by Boers et al.[20] incorporates three stages: 
interaction stage, filtering stage, and combination stage. 

Although Boers et al.[1,6] have extended the PF 
algorithm to detect and track two targets through mul-
tiple hypotheses testing, it is not suitable for applica-
tion with more than two variant targets. Let us first 
consider the situation that the number of the targets is 
known and fixed as N. The binary hypothesis follows:

H0: no target existent
( ) ( ), ,Z n .i j i j
k k=

H1: N targets coexistent
( ) ( ) ( )( ) ( ), , ,

1
Z X ,u n .Ni j i j n i j
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=
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Assume that the distance from one target to any 
other is beyond 5Σ, that is to say ( )X

i
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j
k  

( ), 1, :i j N ∈   ：
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Then there is no cell impacted by more than one of the 
targets simultaneously. And LR of Zk can be written as
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Let X(n,k) denote the state of the target n up to time k:

( ) ( ) ( )
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LR of Zk with FSS M can be written as
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sustaining particles. After the re-sampling, only 4000 
particles were held. The variance of the focal plane ar-
ray imaging errors was 0.05 bin both in x and y dimen-
sions. The FSS for the SLRT was 6 and the upper and 
down thresholds were set to h1 = 9 × 104 and h0 = 10.  
And the maximum velocity vmax for the particles to be 
initialized is set to be 5 pixels/frame. Hundred Mon-
te Carlo trials were conducted. The mode transition 
matrix was given by

0.8 0.1 0.1
0.3 0.6 0.1 .
0.3 0.1 0.6

 
 Π =  
  

In order to reduce the complexity, the raw image data 
are pre-segmented by a very low threshold to get the 
cells, in which the target might locate. And the par-
ticles sampled for new born targets are uniformly dis-
tributed around the cells.

The map of the data set at frame 10 is shown in Fig. 1(a)  
with target-1 centered at pixel (20, 16), target-2 cen-
tered at pixel (20, 21), and target-3 centered at pixel 
(20, 35). The true traces and the detected traces are 
shown in Fig. 1(b). It can be seen that the total three 
targets are detected and tracked successfully.

The mode probability estimated of the three targets 
at each time step is shown in Fig. 2. It validates the al-
gorithm efficiency to estimate the target motion model. 
Among the 100 Monte Carlo trials, three targets were 
fully detected with no false traces. 

The root mean square (RMS) errors in position and 
amplitude are calculated according to 

	 ( ) ( )2 2

, ,
1

1 ˆ ˆRMS error ,
cN

k k k i k k i
ic

x x y y
N =
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where  xk and yk are the true target positions at time 
k, ,k̂ ix  and ,k̂ iy  are the estimated target positions of 
iteration i, Ik is the target amplitude along with its es-
timation ,

ˆ ,k iI  and Nc is the number of the Monte Carlo 
trials.

at that the sequential LR exceeds the upper threshold 
η1 lags the target arising time. And the estimated tar-
get state at that time differs from the true target state. 
The difference is fatal for some military application 
such as missile surveillance. In addition, the detecting 
filter for new target is started up at the estimated tar-
get arising time. The improvement on the estimation 
provides better performance.

To attain better estimation of the state and time of 
target arising, an inverted PF based on SLRT with FSS 
(FSS-SLRT) is implemented through the time target 
detected to the time t0 target terminated. And the time 
of target arising is estimated according to the change 
degree of the LR, which is given as 

	 ( )( ){ }0 0
ˆ arg max , , ,arit k k k t t Mα  = ∈ +  � (22)

where a(k)is the forward change degree of the  LR:
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Similarly the target vanishing time vant̂  is estimated by

	 ( )( ){ }van 1 1
ˆ arg max , , ,t k k k t M tβ  = ∈ −  � (24)

where t1 is the time when the FSS-SLRT is terminated 
and b(k)is the backward change degree of the LR: 
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The algorithm was tested on the simulated data of a 
scenario with three targets, which consists of 40 frames: 
target-1 at SNRP -2.2 dB arisen at frame 5 with the 
initial state [15.5, 1.1, 15.5, 0.2, and 7.8] T, which 
moved for 10 s with a CV model and then switched to 
C-CT model for another 10 s. And it switched to CV 
again for 10 s and vanished at frame 35. Target-2 at 
SNRP 2.3 dB arisen at frame 5 with the initial state  
[25.4, -1.1, 20.8, 0.1, and 9.8] T, which moved for 10 s 
with a CV model and then switched to AC-CT model 
for the next 10 s. And it switched to CV again for 10 s 
and disappeared at frame 35. Target-3 at SNRP -2.2 dB  
moved from frame 10 to frame 30 with the initial state 
[20, 0.1, 35.5, -1.2, and 7.8] T and the CV model. 

The size of the image was 60 × 60 and the target spread 
was Σ = 0.7. The frame time step was T = 1 s. The de-
tection performance indicator were defined as PD = 0.9  
and PF = 1 × 10-5. Targets maneuvering angular rate 
was w = 0.314 rad/s. The process noise covariance Q 
was defined as in Ref. [21] with qs = 0.001 and qi = 0.01.  
The minimum and the maximum of the additive pro-
cess noise were set to 0.5 and 10 Q. The amplitude 
noise variance s2 was set to 1 and the detection prob-
ability PD was set to 0.995. The number of particles for 
tracking filter was chosen to be 4000. And the num-
ber of the particles for detecting filter was chosen to 
be 8000 with the half representing the new born par-
ticles at each frame and the rest half representing the 
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Fig. 1 (a) Map of the data set for three targets (‘’) and  
(b) multi-target traces.
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The performances of the algorithm in terms of the 
RMS in position and in amplitude are shown in Fig. 3.  
It can be seen that the error of the targets position 
estimation at the time targets arisen was depressed 
through the inverted PF. But the peaks took on as the 
time targets were detected.  

The FSS-SLRT is shown in Fig. 4. It displays that 
not only the time targets are detected but also the time 
targets are terminated, respectively, lagged the true 
time targets arisen and vanished. 

The forward and backward change degrees of the LR 
for three targets are shown in Fig. 5. The peaks of a 
took on at the time targets arisen and the peaks of b 
took on at the time targets vanished. 

The averaging estimation of the time targets arisen 
and vanished is listed in Table 1. It can be seen that 
the estimation on the change degree of the LR is much 
better than that on FSS-SLRT.
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Table 1. Comparison of the Estimation of the 
Time Targets Arisen and Vanished

Targets arisen 
(s)

Targets vanished 
(s)

Target 1 2 3 1 2 3
True 5 5 10 35 35 30
FSS-SLRT 9.1 7.8 14.2 38 38 34
Presented 6.8 5.4 11 35.1 34.8 29.9

Further we compare the presented algorithm with 
the PF, which is combined with multi-model. The al-
gorithms are tested on the simulated data of a scenario 
with one target at SNRP 3.8 dB. The raw data and 
target trace are depicted in Fig. 6.

The detected target trace and the RMS error are de-
picted in Fig. 7. It seems that the presented algorithm 
can accurately track the target trace with better per-
formance over MM-PF in RMS error especially at the 
time the target arise and vanish.

In conclusion, we introduce a PF-based TBD algo-
rithm for multiple targets with optimization through 
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Fig. 6. Map of the data set for one target (‘’) and target 
trace.
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Fig. 7. Detected target trace and RMS error in position.

selectively particles sampling and additive process 
noise. The algorithm improves the estimation of the 
target arising and vanishing time and state, which gives 
satisfactory performance on the simulated data with 
three maneuvering targets at different SNRs. Although 
it is assumed that multiple targets do not encounter in 
a cell, it is able to track multiple targets with collision 
for the constraint on the new born particles.
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