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A new sub-aperture overlapping area fusion algorithm based on wavelet transformation is proposed to
retain high-frequency components as much as the measurements in the sub-aperture overlapping areas.
The principles of sub-aperture stitching are briefly introduced, and the fusion algorithm based on wavelet
transformation is demonstrated. The results of the experiment indicate that the new algorithm improves
the retention of high-frequency measurement components.
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With the development of modern science and technol-
ogy, large-aperture optical systems have become widely
used"?l. Thus, determination of methods by which to
analyze large-aperture optical components have become
a challenge for researchers. An interferometer with an
aperture larger than the optical flat under study is nec-
essary to investigate large-aperture optical flats directly.
However, the manufacture of large-aperture interferome-
ters is expensive and highly impractical. To address this
problem, Kim et al.l3! proposed the use of a sub-aperture
stitching method to test large-aperture optical compo-
nents in 1982. The sub-aperture stitching method mea-
sures a large-aperture optical flat using an interferometer
with a smaller aperture. The aperture under study is
covered by several smaller sub-apertures, which can be
directly measured by the interferometer. To cover the
aperture under study and correct for location errors, ad-
jacent sub-apertures feature overlapping areas!*. These
sub-aperture overlapping areas must be fused to obtain
the results of the full aperture. The sub-aperture overlap-
ping area fusion algorithm currently used is a weighted-
average algorithm[!, which leads to stabilization of the
fusion results. However, location errors may decrease
the high-frequency components of measurements in the
weighted-average algorithm; these components are highly
important in some cases!!. Therefore, another algorithm
must be developed to fuse sub-aperture overlapping ar-
eas. The new algorithm may be adapted from the image
fusion domain[”"—9!. Image fusion based on wavelet trans-
formation is a mature technique that can sufficiently re-
tain high-frequency components!'°=12/, Thus, the fusing
of sub-aperture overlapping areas based on wavelet trans-
formation may be feasible. The theory of sub-aperture
stitching is given briefly. The sub-aperture overlapping
area fusion algorithm based on wavelet transformation is
demonstrated. A comparison between the new algorithm
and the average algorithm is provided through experi-
ments.

Wavelet analysis is a multi-scale technique. There-
fore, wavelet transformation is a highly useful tool in
image processing. Discrete wavelet transform (DWT)
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preserves all of the information of an image. The use
of DWT is a major breakthrough in the field of image
fusion. Initial image decomposition by DWT results
in four regions (Fig.1): LL represents low-frequency
coefficients, whereas LH, HL, and HH represent high-
frequency coefficients.

After compensating for relative tilt, piston, and me-
chanical location errors, sub-aperture overlapping areas
must be fused to obtain full aperture results. Firstly, the
images of overlapping areas are decomposed by three-
level DWT (Fig. 2): lyLL3 represents low-frequency
coefficients, whereas LH3, HL3, HH3, LH2, HL2,
HH2, LH1, HL1, and HHI1 represent high-frequency
coefficients.  Low-frequency coefficients contain ap-
proximately the same characteristics as the images of
overlapping areas. Thus, an average rule can be used
to fuse these overlapping areas together['3). Larger ab-
solute values of the coefficients correspond to sharper
brightness changes'¥. To retain as much of the salient
features in the images as possible, including edges, lines,
and regional boundaries, the choose-max scheme, which
involves simple selection of coefficients with large abso-
lute values and discarding others, is widely used in image
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Fig. 1. Discrete wavelet transform (DWT).
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Fig. 2. Three-level DW'T.
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fusion!'. However, the goal of fusing sub-aperture over-
lapping areas is to retain high-frequency components
as much as the measurements. Thus, high-frequency
coefficients are fused using the choose-randomly scheme,
which involves randomly selecting a coefficient and dis-
carding others. Although high-frequency components
are not retained as “real,” these parameters indicate the
number of high-frequency components that exist in a
certain area, which is our real concern. Finally, the fused
image of the overlapping areas is obtained using inverse
DWT (IDWT). Fusion of sub-aperture overlapping areas
based on wavelet transformation is shown in Fig. 3.
Using the lattice design shown in Fig. 4, a flat surface
is measured by a sub-aperture stitching interferometer.
After compensating for relative tilt, piston, and other
mechanical location errors, the sub-aperture overlapping
areas are fused using two methods: by calculating their
average values (the old algorithm, Fig. 5) and by using
the algorithm introduced in the following (the new algo-
rithm). The full-aperture results are shown in Fig. 6.
The results obtained from both methods do not appear
to have notable differences. However, after high-pass
filtering, differences may easily be detected (Fig. 7).
The old algorithm clearly reduces the high-frequency
components of the measurements in the sub-aperture
overlapping areas, whereas the new algorithm retains
the high-frequency components nearly as much as the
measurements in the sub-aperture overlapping areas.
Moreover, after high-pass filtering, the measurement
root mean square (RMS) obtained in the sub-aperture
overlapping areas is 0.0007537, the full-aperture RMS
obtained using the old algorithm in the sub-aperture
overlapping areas is 0.0005609)\, and the full-aperture
RMS obtained using the new algorithm in the sub-
aperture overlapping areas is 0.0007419\.
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Fig. 3. Fusion of sub-aperture overlapping areas based on
wavelet transformation.

Fig. 4. Lattice design.
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Fig. 5. Old algorithm.
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Fig. 6. Full- aperture results obtained by using (a) the old
algorithm and (b) the new algorithm. Unit: wavelength.
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Fig. 7. Full-aperture results obtained by using (a) the old al-
gorithm and (b) the new algorithm after high-pass filtering.
Unit: wavelength.

In conclusion, a new sub-aperture overlapping area
fusion algorithm based on wavelet transformation is pro-
posed to retain high-frequency components nearly as
much as the measurements. Experiments show that the
old sub-aperture overlapping area fusion algorithm re-
duces the high-frequency components of measurements,
whereas the new algorithm retains the high-frequency
components as much as the measurements.
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