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Commercial iris biometric systems exhibit good performance for near-infrared (NIR) images but poor per-
formance for visible wavelength (VW) data. To address this problem, we propose an iris biometric system
for VW data. The system includes localizing iris boundaries that use bimodal thresholding, Euclidean
distance transform (EDT), and a circular pixel counting scheme (CPCS). Eyelids are localized using a
parabolic pixel counting scheme (PPCS), and eyelashes, light reflections, and skin parts are adaptively
detected using image intensity. Features are extracted using the log Gabor filter, and finally, matching is
performed using Hamming distance (HD). The experimental results on UBIRIS and CASIA show that the
proposed technique outperforms contemporary approaches.
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Biometric technology relies on physiological and/or phys-
ical traits (e.g., iris, fingerprint, signature, voice, and
face)[1−5] to recognize individuals. Among these well-
known traits, faces, fingerprints, and voices are com-
monly used for human identification; such an approach
suffers from implicit drawbacks, including the fact that
the aforementioned attributes may change as a subject
ages, and the possibility that individual characteristics
may be artificially duplicated[6]. By contrast, the iris
texture approach is unique, stable, and non-invasive[1].
Literatures revealed that iris texture remained stable
over almost an entire lifetime, except for some small
variations occurring in a person’s early life[7,8]. A typ-
ical iris biometric system involves image acquisition,
iris segmentation, feature extraction, and matching and
recognition[6,7,9]. Notably, the overall accuracy of the
system depends on the efficient implementation of each
of the aforementioned modules. In contrast to this idea,
our study emphasizes the efficient implementation of the
segmentation module, which generally involves two basic
functions: i) localizing the inner (pupillary) and outer
(limbic) boundaries of the iris; ii) detecting and removing
noise, such as eyelashes, eyelids, and reflections.

To localize iris boundaries, most state-of-the-art iris
localization techniques[1] involve Daugman’s integro-
differential operator (IDO)[7] and/or circular Hough
transform (CHT)[8]. IDO directly operates on the input
eye image to localize the desired boundary with circle
approximation. A drawback to this method is that it is
sensitive to saturated light reflections and exhibits poor
performance. Visible wavelength (VW) data contain
relatively more light reflections. CHT requires an edge
map of the eye image to localize the desired boundary,
but this technique consumes a relatively large amount of
memory[6,9]. Some recent techniques[1] feature a number

of simple strategies[1,2] (e.g., image projection functions)
for localizing seed pixels with the lowest gray intensity
in the iris/pupil region; these strategies effectively work
for near-infrared (NIR) data but may fail for VW data.
This discrepancy occurs because VW images contain
more reflections than do NIR images, which may result
in artificial bias with regard to gray intensity in the
iris/pupil region. In Ref. [10], the authors presented a
new iris recognition method that was tested on both
NIR and VW data. The proposed method involves lo-
calizing pupillary boundary using an adaptive threshold
and a spectrum image (i.e., Euclidean distance transform
(EDT) image), localizing limbic boundary using a cir-
cular summation of intensities, and extracting features
using a speeded-up robust features approach. The main
drawback of this method lies in extracting the pupillary
boundary, whose center is taken as the peak point in the
EDT image and whose radius is taken from the binary
image. This approach may work better for relatively
good NIR data but may work poorly for VW data be-
cause the pupil region in VW data may not always be the
darkest part given light reflections and similar problems.
Other histogram and thresholding-based techniques[2,6,9]

may also fail for VW data because these techniques rely
on an image’s gray-level intensity.

To solve the highlighted issues, we formulate a scheme
as follows. Firstly, we minimize the effect of light re-
flections in an eye image using a median filter, bi-
narize the resultant preprocessed image using Otsu’s
thresholding[11,12], and then compute its EDT. The pixel
with the highest value in the EDT image generally rep-
resents a point (seed pixel) in the pupil/iris region. Sec-
ondly, We propose a new circular pixel counting scheme
(CPCS) for localizing limbic boundary, with its center
confined to a small region in the middle of the seed pixel.
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Finally, we reuse the CPCS to localize pupillary bound-
ary within the iris region.

The second state of our segmentation module involves
the removal of noise, such as eyelashes and eyelids. Al-
though eyelashes and reflections also distort iris texture,
the main sources of occlusion are the eyelids, particularly
the upper eyelid, which relatively covers a larger portion
of iris texture. Masek et al.[13,14] used line Hough trans-
form, which may remove a significant amount of useful
iris texture or may leave some occlusions undetected be-
cause an eyelid best fits parabolic arcs. In Refs. [8, 15,
16], the authors used the parabolic Hough transform to
localize eyelids—an approach that requires a relatively
large amount of memory. An important issue in CHT-
and IDO-based eyelid localization is that these entail
relatively more time if the iris in an eye image is not
horizontally oriented. To localize eyelids in a rotated
iris image, CHT and IDO use a fourth parameter, that
is, the angle of rotation—an expensive computation pro-
cess. Other researchers[1] also used the parabolic version
of IDO to localize eyelids; this approach is sensitive to
reflections. To solve these issues, we propose a reliable
parabolic pixel counting scheme (PPCS) for localizing
eyelids in the normalized iris region. We also adaptively
detect eyelashes, reflections, and skin parts.

As shown in Fig. 1(a), we firstly pass the gray for-
mat g(x, y) of the input eye image through a median
filter (window size, (15× 15)) to smooth rapid gray-level
variations; with median filtering, any small object in a
digital image, whose area is less than one-half the filter’s
area, is removed[17]. Next, we binarize the resultant
preprocessed image r(x, y) using a well-known Otsu’s
thresholding method[12] (Fig. 1(b)). In the optimal
mode, however, Otsu’s thresholding method categorizes
the gray-level intensities of all the pixels in r(x, y) into
two unique classes and then computes an appropriate
threshold for binarizing the pixels. The resultant binary
image is b(x, y) (Fig. 1(c)). We likewise fill holes in
b(x, y) by a bilinear interpolation technique[18]. A hole
is a region of dark pixels that are completely surrounded
by light pixels and inaccessible from image dimensions.
We then compute the EDT[19] of b(x, y). For each pixel
in b(x, y), EDT assigns a number that represents the dis-
tance between that pixel and the nearest non-zero pixel
of b(x, y). Figure 1(d) shows that the resultant image is
dt(x, y).

Let (Sx, Sy) be the coordinates of a pixel (seed pixel)
with a maximum value in dt(x, y). We then mark a
circular disk (region of interest (ROI), green) with a
40-pixel radius centered on (Sx, Sy), as shown in Fig.
2(a). Moreover, let (x̄i, ȳi) for i=1, 2, 3, · · · , Ni be
the coordinates of the pixels in this ROI, where Ni is
the total number of pixels. Then, we use the Canny
edge-detecting operator[20] to generate edge map e(x, y)
for r(x, y) (Fig. 2(b)). Subsequently, we use Algorithm
∼1, which is based on the CPCS strategy, to localize the
limbic boundary with circle approximation (xc, yc, rc),
where (xc, yc) and rc represent the center and radius
parameters, respectively.

Algorithm ∼1 functions as follows. In steps 2–4, this
algorithm draws a band of circles in e(x, y), which is cen-
tered on (x̄i, ȳi) for i ∈(1, 2, 3, · · · , Ni), and has radii-
range (ri1 : ri2) (Fig. 2(b)). ri1 and ri2 represent the

Fig. 1. (a) g(x, y) showing different eye parts. (b) Prepro-
cessed image r(x, y). (c) Holes-filled binary image b(x, y) and
(d) EDT image dt(x, y). Eye image is taken from the UBIRIS

V1[17].

Fig. 2. (a) ROI centered on (Sx, Sy) in r(x, y). (b) Edge-map
e(x, y) showing a sample of the band of circles (for simplic-
ity, some of the circles are drawn) centered at a ROI-point
(x̄1, ȳ1). (c) Limbic boundary localized with (xc, yc, rc).

lower and upper radii limits of this band, respectively.
This kind of radii-range is most often used in all state-
of-the-art iris localization methods[1,7,8,13,18], which are
based on IDO and/or CHT operators. For generaliza-
tion, however, we experimentally set it as (ri1 : ri2)=(0.1
w:0.4 w), where w represents the width of g(x, y). For
each circle in the current band, the total pixels (which are
covered by their boundaries in e(x, y)) are counted and
then the parameter vector (x̄i, ȳi, r̃) of a circle with the
maximum count is registered into (X,Y,R). The maxi-
mum count (i.e., Count) is also registered into Acc. This
process is repeated for all (x̄i, ȳi) for i=1, 2, 3, · · · , Ni

in the ROI. Given that e(x, y) may contain edges for ir-
relevant regions, such as skin wrinkles and eyebrows, a
peak in Acc is therefore not necessarily a true candidate
of limbic boundary. To solve this issue, steps 5 and 6
verify the average gray-level intensity of the iris region
in r(x, y). We firstly extract maximum (ψ) and its as-
sociated location (xc, yc, rc) from Acc and (X,Y,R), and
then compute the average (mean) gray-level value (µc) of
the pixels in a circular region described by (xc, yc, rc) in
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Algorithm∼1: Limbic Boundary Demarcation Using

CPCS Strategy

Input-step: (ri1 : ri2), e(x, y), and (x̄i, ȳi),

for i=1, 2, 3, · · · , Ni.

Step 1: Ind←1; φ←0; and Acc←0.

for i = (1 : Ni) do

for r̃ = (ri1 : ri2) do

Step 2: Count←0.

for θ = (0 : 2π) do

Step 3: (xθ, yθ)← (x̄i + r̃ cos θ, ȳi + r̃ sin θ),

Count←(Count+e(xθ, yθ)).

end

Step 4: if (Count > φ) then

φ← Count; (Xind, Yind, Rind)← (x̄i, ȳi, r̃);

Accind ←Count; and Ind← (ind+ 1).

end

end

end

Step 5: extract a peak (ψ) and its corresponding

location (xc, yc, rc) from

Acc and (X,Y,R), respectively; next, compute

mean (µc) of pixels

lying within a circular region described by

(xc, yc, rc) in r(x, y).

Step 6: if (µc < µr) then // where µr is the

mean of r(x, y)

go to output-step;

else if (ψ > ψo)

suppress ψ to zero in Acc and repeat process

from step 5;

else

abort the iris localization process.

end

Output-step: (xc, yc, rc) is the accurate parameter

vector of limbic boundary.

r(x, y). If (µc < µr), then (xc, yc, rc) represents the
accurate parameter vector of the limbic boundary. Oth-
erwise, it suppresses ψ to zero in Acc. This process is
repeated from step 5 provided that Acc is not scanned
below its lower limit (ψo), which is experimentally set
to 10. However, if Acc is scanned below its lower limit,
then iris localization is aborted because of low quality
(e.g., closed eye).

Figure 3 illustrates numerous peaks in Acc; these peaks
are candidates for the circles and/or circular arcs in
e(x, y). These multiple candidates exist because of the
probable circular arcs in e(x, y), which are usually caused
by skin wrinkles, eyebrows, and eyelids. The proposed
CPCS strategy embedded in Algorithm ∼1 considers
these arcs because of the tolerance of this strategy to
broken contours of circular shapes in e(x, y). However,
robustly localizing a target object using a coarse-to-fine
strategy is a positive sign because this localization is
adopted in steps 5 and 6 of Algorithm ∼1. Figure 2(c)
shows the iris boundary localized using Algorithm ∼1.

After localizing the limbic boundary, we then demar-
cate the pupillary boundary by circle approximation
(xp, yp, rp), where (xp, yp) and rp are the center and
radius of the circular pupillary boundary, respectively.
To begin, we first mark a ROI (green), centered on iris

center (xc, yc), with a 10-pixel radius within the coarse
iris region (Fig. 4(a)). Np is the total number of pixels
in this ROI. The radii-range for the circular pupillary
boundary is experimentally set as (rp1 : rp2)=(5:0.6 rc).
For clarity, rp2 is marked with a blue circle in Fig. 4(a).
Corresponding to (rp1 : rp2), we mask out the edges
from e(x, y)(Fig. 4(b)) and reuse the CPCS strategy
embedded in Algorithm ∼1 (except for steps 5 and 6) to
extract (xp, yp, rp). Note that instead of applying steps
5 and 6, we simply extract (xp, yp, rp) from (X,Y,R)
corresponding to a peak value in Acc. Figure 4(c) shows
the pupillary boundary marked with (xp, yp, rp).

After localizing the iris boundaries, the next step in
iris segmentation is noise detection and exclusion. Prior
to removing noise, we firstly apply Daugman’s rubber
sheet model[7,13] to normalize annular iris region i(x, y)
(Fig. 4), which is sandwiched between the pupillary and
limbic boundaries. The physical geometry of the iris of
a specific subject may vary across various eye images
for the following reasons[7]: different image acquisition
setups, different distances between a subject’s eye and
the camera, and pupil dilation. To minimize the effects
of these defects, the rubber sheet model is used to trans-
form i(x, y) into a fixed rectangular strip called polar
image p(r̄, θ̄). This model transforms each point in iris
region (x, y) to a pair of polar coordinates (r̄, θ̄), where r̄
and θ̄ represent the radial and angular resolutions, which
are experimentally set to 60 and 360 pixels, respectively.

Fig. 3. Plot of Count-values in Acc.

Fig. 4. (a) ROI, centered on the iris center (xc, yc), is marked
within the coarse iris region. (b) Edge-map (x, y) containing
edges corresponding to the pupil region only. (c) Pupillary
boundary localized with (xp, yp, rp).
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Figure 5 shows the normalization of i(x, y) in a new gray-
level eye image g(x, y), where the iris region is occluded
by the lower and upper eyelids.

To localize the eyelids, we firstly pass p(r̄, θ̄) through
a median filter with a window size of (5× 5) to smooth
rapid gray-level variations, such as hair threads. In this
study, we adopt a smaller window size that will keep the
edges of the eyelids relatively intact. The resultant edge
map E(x, y) is shown in Fig. 6(b). Next, we bisect p(r̄, θ̄)
into two halves—the left and right halves—which gen-
erally contain the upper and lower eyelids, respectively
(Fig. 6(a)). These eyelids are best fit with the following
parabolic expression:

(x− h)2 = λ(y − k), (1)

where (h, k) and λ represent the vertex and curva-
ture of a parabola, respectively. To localize the ac-
curate location (h, k, λ) of a potential parabolic arc
in p(r̄, θ̄), we should vary only λ and (h, k). There-
fore, we experimentally set λ as (λ1 : λ2)=(20:0.5 L),
where L is the length of p(r̄, θ̄), and λ1 and λ2 repre-
sent the lower and upper curvature limits of this band,
respectively. The red regions in Fig. 6(a) represent
(λ1 : λ2). Similarly, for vertex shifting, we set two
ROIs, namely, roi1 = (h1min : h1max, k1 min : k1max) and
roi2 = (h2min : h2max, k2 min : k2 max), in the left and
right halves of p(r̄, θ̄), respectively. The two regions are
experimentally set as roi1 = (1 : w, 0.25 L ± 10) and
roi2 = (1 : w, 0.75 L± 10), where w represents the width
of p(r̄, θ̄). Note that roi1 and roi2 are marked with yellow
bars centered at 0.25, and 0.75 L, respectively, in p(r̄, θ̄)
(Fig. 6(a)).

We now use Algorithm ∼2, which is based on PPCS, to
localize the eyelid in the left half of p(r̄, θ̄) as follows. In
steps 2–4, Algorithm ∼2 draws a band of parabolic arcs
in E(x, y). The band is centered on (hi, ki) ∈ roi1 for
i ∈(1, 2, 3, · · · , Ne), with a curvature range of (λ1 : λ2)
(Fig. 6(b)), where Ne is the total number of pixels in
roi1. The total pixels covered by the boundary of each
parabolic arc in E(x, y) are counted, and the parame-
ter vector (hi, ki, λ) of the parabola with the maximum
count is registered into (H,K,P ); the maximum count
of that parabola is also registered as Acc ← Count. This
process is repeated for all (hi, ki) for i=1, 2, 3, · · · , Ne

Fig. 5. Normalization of i(x, y) to p(r̄, θ̄).

Algorithm ∼2: Eyelid Detection Using PPCS Strategy

Input-step: E(x, y), (λ1 : λ2), roi1, and roi2.

Step 1: Ind←1; φ←0; and Acc←0.

for i=(1:Ne) do

for λ = (λ1 : λ2) do

Step 2: Count←0.

for x = (xmin : xmax) do // (xmin : xmax)=

(1 : 0.5L)

Step 3: y ← λ−1(x− hi)
2 + ki,

Count← (Count+E(x, y)).

end

Step 4: if (Count> φ) then

φ←Count; (Hind,Kind, Pind)← (hi, ki, λ);

Accind ←Count; Ind←(ind+1).

end

end

end

Step 5: extract a peak (ψ) and its corresponding

location (h, k, λ)

from Acc and (H,K,P ), respectively.

Output-step: (h, k, λ) is the accurate parameter vector.

in roi1. Finally, a maximum (ψ) and its associating lo-
cation (h, k, λ) from Acc and (H,K,P ), respectively, are
extracted, where (h, k, λ) represents the accurate loca-
tion of the eyelid in the left half of p(r̄, θ̄). The eyelid
in the fight half is localized in a similar manner. Figure
6(c) shows the resultant eyelid mask Em(x, y) obtained
using Algorithm ∼2.

After generating the eyelid mask, we adaptively de-
velop reflection mask Rm(x, y) as

Rm(x, y) =

{

1, if p(r̄, θ̄) < T1

0, otherwise
with T1 = 0.85(αu),

(2)

where αu represents the saturated gray-level value[18] of
the top 1% of all the gray values in g(x, y); T1 is experi-
mentally established. Figure 6(d) shows Rm(x, y), which
also contains the eyelid regions. The skin regions are de-
tected and removed even if the eyelid detection scheme
fails because the gray-level intensity of the skin parts is
generally higher than the iris texture. We then adap-
tively develop eyelash mask em(x, y), thus:

em(x, y) =

{

1, if p(r̄, θ̄) < T2

0, otherwise
with T2 = 1.2(αl),

(3)

where αl represents the saturated gray-level value[18] of
the bottom 1% of all the gray values in g(x, y). T2 is also
experimentally established. Figure 6(e) shows em(x, y).
Finally, overall noise mask n(x, y)(Fig. 6(f)) is obtained
as

n(x, y)← [Em(x, y)|Rm(x, y)|em(x, y)]. (4)

We use one-dimension (1D) log Gabor filter G(f) (Fig.
7(a))[7,13] instead of the Gabor filter[13] to extract fea-
tures from p(r̄, θ̄) because Gabor filters have a direct
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Fig. 6. (a) roi1 and roi2 which centered at 0.25 L and 0.75
L in the left and right halves of p(r̄, θ̄), respectively. Simi-
larly, the convex-type region in each of these halves represent
(λ1 : λ2). (b) Edge-map E(x, y) showing a band of parabolic
arcs (for simplicity, some of the parabolic arcs are drawn) lo-
cated at an roi-point (hi, ki) in the Left-half. (c)-(f) Noise
masks: Em(x, y), Rm(x, y), em(x, y), and n(x, y), respec-
tively.

Fig. 7. (a) Real and imaginary part of G(f). (b) the IrisCode
and (c) its corresponding Noise mask, respectively.

current component whenever bandwidth is greater than 1
octave. This problem does not occur in G(f)[13], defined
as

G(f) = exp
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where f0 and σ represent the central frequency and band-
width of G(f), respectively; these are experimentally set
as σ = 0.025 and f0 = 0.05, respectively. We then use
the same procedure as that in Ref. [13] to generate the
IrisCode (also called the template) and its corresponding
Noise mask using p(r̄, θ̄) and n(x, y), respectively. The
resultant IrisCode and its corresponding Noise mask are
shown in Figs. 7(b) and (c), respectively.

For matching, we use the Hamming distance (HD)[13]

as a recognition metric. Only the bits in the probe
(X) (target) and gallery (Y ) (stored in the database)
IrisCodes match and correspond to zero bits in their cor-
responding noise masks; that is, (Xn) and (Yn), respec-

tively.

HD =
1

N −
N
∑

k=1

(Xnk(OR)Ynk)

·

N̄
∑

j=1

(Xj(XOR)Yj)(AND)(X ′

nj(AND)Y ′

nj), (6)

where N is the number of bits per IrisCode, and X ′

n and
Y ′

n are the complements of X and Y , respectively.
The rotational inconsistency of the iris in an eye image

also affects intraclass comparisons. When matching two
IrisCodes, this issue is solved by shifting one IrisCode
and its corresponding Noise mask to the left and right,
respectively, bit wise. A number of HD values are then
calculated from the successive shifts. This bit-wise shift-
ing in the horizontal direction corresponds to the rotation
of the original iris region by an angle given by the an-
gular resolution used. During the matching process, this
shifting strategy[7] corrects for any misalignments in the
normalized iris pattern caused by rotational differences
during imaging. Finally, the lowest value of HD, which
corresponds to the best match between the probe and
gallery IrisCodes, is selected.

To test the authenticity of the system, we simulate the
proposed technique using: i) MATLAB V7; ii) a laptop
equipped with CORETM i5, a 2.4-GHz CPU, and 2-GB
RAM; iii) standard iris databases UBIRIS V1.0[21] and
CASIA-Iris-Interval[22]. UBIRIS V1.0 has 1 877 eye im-
ages acquired from 241 individuals in two sessions using
VW light sources. Only five images of the same eye are
taken from each subject. Each image is stored in an
8-bit JPEG gray format with a resolution of 200 × 150
pixels. This database is specifically designed to simulate
less-constrained iris biometric systems[21], and contains
non-ideal issues, such as eyelids, eyelashes, light reflec-
tions, and low contrast. CASIA-Iris-Interval comprises
2 639 eye images acquired from 249 individuals using a
CASIA-made close-up iris camera equipped with a cir-
cular NIR LED array. Most of the images were acquired
in two sessions. In each image, the pupil contains eight
white dots arranged in a circle. The image resolution is
320 × 280 pixels. Figure 8 shows sample images (taken
from the databases) that are accurately localized using
the proposed scheme.

To compute recognition accuracy, we develop intra-
and inter-class comparisons as follows. A total of 249
main folders can be found in CASIA-Iris-Interval, each

Fig. 8. First and second rows show some eye images taken
from the CASIA-Iris-Interval and UBIRIS V1.0, respectively,
which were accurately localized by the proposed method.
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containing two sub-folders. Numerous sub-folders in this
database are empty because they were not filled with
eye images by the concerned developers. For this rea-
son, we select only 121 main folders from CASIA-Iris-
Interval, so that each sub-folder contains at least four
images. Given at most four images in each sub-folder, we
perform 1,452 intra-class and 232,320 inter-class compar-
isons. Similarly, UBIRIS V1.0 (session 1 only) has 241
folders, each containing five images, amounting to 2,410
intra- and 289,200 inter-class comparisons.

Figure 9 shows the intra- and inter-class distributions
for the CASIA and UBIRIS iris databases. Correspond-
ing to these distributions, Figs. 10(a) and (b) show the
equal error rate (EER) versus HD and the genuine accept
rate (GAR) versus false accept rate (FAR), respectively.
EER is the error rate where both the FAR and false re-
ject rate (FRR) are equal. In this study, FAR is the er-
ror rate of accepting an unenrolled person as an enrolled
one, FRR is the error rate of rejecting an enrolled person
as an unenrolled one, and GAR is the ratio of enrolled
persons accepted by the system to the total number of
enrolled persons entered into the system. For optimum
performance, FRR and FAR should be as small as possi-
ble. For more information, the reader is referred to Refs.
[7,13].

Table 1 compares the accuracy of the proposed tech-
nique with those of recent iris recognition methods as
applied to the UBIRIS and CASIA databases. The pro-
posed technique outperforms UBIRIS because of the rela-
tively large distance between the means of the intra- and
inter-class distributions of the latter. By contrast, the
distance between the means of the intra- and inter-class
distributions of the CASIA database is smaller (Fig. 9).

We also resolve the computational complexity of the
proposed technique as follows. Let Ct be the total com-
putational complexity of the proposed algorithm. It is
defined as

Ct =Cpre + Ciris + Cpupil + Ceyelid

+ Crefl eyelash + Ciriscode, (7)

where Cpre is the total number of steps implemented
by the median filter, Otsu’s thresholding, and EDT.
These processes are simple and therefore do not involve
any iterative strategies. Ciris represents the total num-
ber of steps required to localize the limbic boundary
by using the CPCS strategy (iterative); it is defined as
Ciris = to +Ni(ri2− ri1), where to represents the number
of steps required to generate e(x, y). Similarly, Cpupil is

Fig. 9. First and second rows show the intra and inter class
distributions for the CASIA and UBIRIS databases, respec-
tively.

the total number of steps required to localize the pupil-
lary boundary by reusing the CPCS strategy; it is defined
as Cpupil = Np(rp2 − rp1). Ceyelid is the total number of
steps required to localize both eyelids using the PPCS
strategy; it is defined as Ceyelid = 2Ne(λ2 − λ1) + t1,
where t1 is the number of fixed steps required to gener-
ate E(x, y). Crefl eyelash represents the total number of
steps required to compute Rm(x, y) and em(x, y), and
finally, Ciriscode is the total number of steps required
to generate the desired IrisCode and its corresponding
Noise mask. Ct can be minimized in the following ways:
i) by processing a scaled-down version of g(x, y); ii) by
using the alternate locations in all the ROIs; iii) by re-
ducing the radii-ranges for the inner and outer contours
of the iris and the curvature range of the parabolic arcs.
On average, the optimized code of the proposed algo-
rithm takes 0.8 and 0.5 s to generate an IrisCode and
its Noise mask for g(x, y), respectively, from the CASIA-
Iris-Interval and UBIRIS V1.0, respectively.

In conclusion, we present a robust and reliable iris bio-
metric system for processing VW and NIR data. The
proposed system involves localizing a seed pixel in the
pupil/iris region using an efficient method that includes
median filtering, Otsu’s thresholding, and EDT. We also
propose a novel pixel counting scheme that can localize
both the iris contours and eyelids with great precision;
that is, the pupillary and limbic boundaries are localized

Table 1. Recognition Accuracy Comparison

Method
UBIRIS V1.0 CASIA-Iris-Interval

FAR(%) FRR(%) Accuracy(%) FAR(%) FRR(%) Accuracy(%)

Belcher & Du[23]a(SIFT: Fixed strip) 13.08 32.91 77.00 7.16 19.64 86.59

Belcher & Du[23]a(SIFT: Adaptive strip) 6.16 0.00 96.91 3.74 4.34 95.95

Mehrotra et al.[10](SURF: Fixed strip) 7.34 4.11 94.27 3.39 4.78 95.91

Mehrotra et al.[10](SURF: Adaptive strip) 5.02 1.80 96.58 1.55 3.80 97.32

Kang et al.[24] – – – 0.05 – 98.60

Proposed 0.10 0.00 99.6 0.047 0.011 99.40

a: Results are taken from Ref. [10]
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Fig. 10. (a) EER versus HD. (b) GAR versus FAR

using CPCS, and eyelids are localized using PPCS. In
addition, light reflections, skin parts, and eyelashes are
adaptively marked, thereby considerably enhancing over-
all system accuracy. Finally, the recognition accuracy of
the proposed technique for both VW and NIR databases
is better than those of recent state-of-the-art iris recog-
nition techniques.
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