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Fourier–Mellin expansion coefficients
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Orthogonal polynomials over the interior of a unit circle are widely used in aberration theory and in
describing ocular wavefront in ophthalmic applications. In optics, Zernike polynomials (ZPs) are commonly
applied for the same purpose, and scaling their expansion coefficients to arbitrary aperture sizes is a useful
technique to analyze systems with different pupil sizes. By employing the orthogonal Fourier–Mellin
polynomials and their properties, a new formula is established based on the same techniques used to
develop the scaled pupil sizes. The description by the orthogonal Fourier–Mellin polynomials for the
aberration functions is better than that by the ZPs in terms of the wavefront reconstruction errors.
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Zernike polynomials (ZPs), which play a fundamental
role in the theory of optical aberration and diffraction,
have been widely used in the areas of optical test-
ing, wavefront sensing, and ocular aberrations of human
eyes[1−3]. Relating the combined aberration modes of
a concentric pupil with the Zernike modes over a unit
circle has been done by utilizing the ZPs[4]. ZPs have
also been used in image processing theory, particularly in
cases that require rotation invariant features[5−7]. Sheng
et al. showed the difficulties in describing small im-
ages when they used ZPs for scaled-invariant imaging
systems[8]. They used another set of basis functions that
is orthogonal over the continuous unit circle: Fourier–
Mellin polynomials (FMPs). The authors applying the
new radial polynomials for image moments and showed
that these polynomials had better performance than ZPs
in terms of image description and noise sensitivity. Sev-
eral papers have been written about the rescaling of the
ZP expansion coefficients. Dai[9] showed a simple for-
mula to scale a small-sized pupil. He derived an analyt-
ical formula to express the scaled pupil in terms of the
unscaled pupil sizes. Janssen et al.[10] obtained a concise
formula for the Zernike coefficients of scaled pupils based
on the orthogonality property of ZPs. Schwiegerling[11]

applied another set of basis functions called the pseudo-
Zernike polynomials (PZPs). He used techniques similar
to those used by Janssen et al. to rescale the coefficients
of a related set of basis functions.

In this letter, we propose a new formula for the Fourier–
Mellin coefficients of scaled pupils based on their orthog-
onal properties. This set of orthogonal polynomials has a
relationship with the regular FMPs that are not orthog-
onal. FMPs are closely related to ZPs and PZPs; the
only difference is on the radial polynomials between the
FMPs and the ZPs or PZPs.

ZPs have been widely used as a set of basis functions
because of their connection to optical systems with cir-
cular apertures. In general, ZPs are defined as

Zm
n (r, θ) = Nm

n Rm
n (r)Θ(mθ), (1)

where Nm
n is the normalization factor given by

Nm
n =

√

2(n + 1)

1 + δm0
, (2)

and δm0 is the Kronecker delta function (i.e., δm0=1 for
m = 0 and δm0=0 for m 6= 0). The radial polynomials
Rm

n (r) can be defined as

Rm
n (r) =

n−m

2
∑

k=0

(−1)k (n − k)!

k!(n+m
2 − k)!(n−m

2 − k)!
rn−2k. (3)

The triangular function Θ(mθ) is given by

Θ(mθ) =

{

cos(mθ) m > 0
− sin(mθ) m < 0

. (4)

The ZPs depend on a double indexing scheme where n de-
scribes the radial degree, and m describes the azimuthal
frequency. The value of n is a non-negative integer, and
m is an integer that satisfies n − m = even.

FMPs are an alternative to ZPs, which are also orthog-
onal on the continuous unit circle[8]. Here, we adopted a
similar definition to Eq. (1). The FMPs are defined as

Y
m
n (r, θ) = N

m
n Qn(r)Θ(mθ). (5)

The normalization factor and the triangular function are
identical for the two polynomial sets. The value of n is a
non-negative integer, and m is an integer number. The
radial polynomial of the FMPs, Qn(r), is given by

Qn(r) =

n
∑

s=0

αns rs, (6)

αns = (−1)
n+s (n + s + 1)!

(n − s)!s!(s + 1)!
. (7)

The presence of many factorial terms in Eq. (7) makes
its computation a time-consuming task. To avoid this
problem, Papakostas et al.

[12] proposed a recursive algo-
rithm to compute the Fourier–Mellin radial polynomials

1671-7694/2013/080101(4) 080101-1 c© 2013 Chinese Optics Letters



COL 11(8), 080101(2013) CHINESE OPTICS LETTERS August 10, 2013

as

Qn(r) =

n
∑

k=0

(−1)
n+k

Tn,k rk,

TN,K = N + 1,

TN,K =
(n + k + 1)(n − k + 1)

k(k + 1)
Tn,k−1 . (8)

The absence of the factorial terms in the aforementioned
recursive method makes it superior to the direct method
in Eqs. (6) and (7).

The set of polynomials Qn(r) is orthogonal over the
unit disk:

1
∫

0

Qn(r) Qn(r)rdr =
1

2(n + 1)
δnk, (9)

where δnk is the Kronecker symbol. This orthogonality
property of the FMPs is used in deriving the pupil size
scaling of the Fourier–Mellin sets. Meanwhile, the regular
FMPs are not orthogonal and are defined in the ranges
r ∈ [0, +∞) and θ ∈ [0, 2π] as

X
m
n (r, θ) = rn Θ(mθ). (10)

Given the non-orthogonality problem of the regular
Fourier–Mellin sets, the wavefront cannot be expressed in
their terms. However, the radial basis orthogonal poly-
nomials, such as the ZPs, PZPs, and FMPs, can be ex-
pressed as linear combinations of the regular Fourier–
Mellin monomials.

One of the major advantages of FMPs over ZPs and
PZPs is the number of zeros of the radial polynomials.
The radial degree n of Qn(r) in FMPs can be significantly
lower than that in ZPs and PZPs. The number of zeros
of the radial polynomials corresponds to the capability
of the polynomials to describe the high-spatial-frequency
components of the wavefront function. For a given radial
degree n and the azimuthal frequency m, the Qn(r) has
n zeros, and the Rm

n (r) has (n−m)/2 zeros. Comparing
the Qn(r) and the Rm

n (r) with the same number of zeros
shows that the zeros of the Qn(r) are nearly uniformly
distributed over the unit disc, whereas the zeros of the
Rm

n (r) are located in the region of large radial distance
r from the origin. Figure 1 shows the distribution of the
zeros of the Zernike radial and the FMPs for the same
number of zeros.

Fig. 1. Distribution of the zeros of the Zernike radial and the
FMPs for the same number of zeros.

Various researchers have derived new pupil sizes based
on the scaling of ZPs and PZPs[9−11]. These derivations
vary in their complexity, but the final result is the same.
Janssen et al.[10] derived a simple formula for the scaled
pupils of Zernike coefficients and showed that

1
∫

0

R
m
n (r) R

m
k (εr)rdr =

1

2(n + 1)
[R

n
k (ε) − R

n+2
k (ε)].

(11)

In Eq. (11), let m = 1 and change k, n, and ε to
2k + 1, 2n + 1, and

√
ε, respectively. The new form of

Eq. (11) can be written as

1
∫

0

R
1
2n+1(r) R

1
2k+1(

√
εr)rdr

=
1

4(n + 1)

[

R
2n+1
2k+1 (

√
ε)−R2n+3

2k+1(
√

ε)
]

. (12)

The radial components of the ZPs and FMPs are related
by[8]

r Qn(r2) = R
1
2n+1(r). (13)

Based on the relationship in Eq. (13), the new expression
for Eq. (12) can be written as

1
∫

0

rQn(r2)
√

εr Qk(ε r2)rdr

=
1

4(n + 1)

[

R
2n+1
2k+1 (

√
ε)−R2n+3

2k+1(
√

ε)
]

. (14)

Changing r2 to r in Eq. (14) results in

1
∫

0

Qn(r) Qk(εr)rdr

=
1

2
√

ε(n + 1)

[

R
2n+1
2k+1 (

√
ε)−R2n+3

2k+1(
√

ε)
]

. (15)

Equation (15) leads to the brief description of scaling the
pupil using the FMP expansions. Scaling FMPs follows
an analogous procedure. If W (r, θ) is the wavefront er-
ror of an optical system, i.e., the aberrations, in the exit
pupil, then it can be expanded in terms of the complete
set of FMPs, Y m

n (r, θ), with the pupil radius normalized
to unity as

W (r, θ) =

N
∑

k=0

k
∑

m=−k

akm Y
m
n (r, θ), (16)

where akm is the Fourier–Mellin coefficient representing
the FMP expansion into the pupil, and N is the total
number of orders used for the expansion.

The goal of pupil rescaling is to derive new coefficients
for the wavefront error expansion in the scaled pupils
from those corresponding to the whole unit pupil.
Defining a normalized scale parameter 0 6 ε < 1, the
wavefront function over the new pupil is given by

W (εr, θ) =

N
∑

k=0

k
∑

m=−k

bkm Y
m
n (r, θ). (17)
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From Eq. (16),

W (εr, θ) =

N
∑

k=0

k
∑

m=−k

akm Y
m
n (εr, θ). (18)

Equating Eqs. (17) and (18) and substituting Eq. (5) for
the FMPs yields

N
∑

k=0

k
∑

m=−k

bkm N
m
k Qk(r)Θ(mθ)

=

N
∑

k=0

k
∑

m=−k

akm N
m
k Qk(εr)Θ(mθ). (19)

Both sides of Eq. (19) are multiplied by rQn(r) and in-
tegrated over r with limits of integration ranging from
zero to one, giving

k
∑

m=−k

bkm N
m
k





1
∫

0

Qn(r)Qk(r)rdr



 Θ(mθ)

=

k
∑

m=−k

akm N
m
k





1
∫

0

Qn(r)Qk(εr)rdr



Θ(mθ). (20)

Using the orthogonality property of the FMPs in Eq. (9)
and the obtained results in Eq. (15) leads to

N
∑

k=0

k
∑

m=−k

bkm N
m
k δnk Θ(mθ) =

N
∑

k=0

k
∑

m=−k

akm N
m
k

× 1√
ε

[

R
2n+1
2k+1 (

√
ε)−R2n+3

2k+1(
√

ε)
]

Θ(mθ). (21)

If the triangular function is the same in both sides of
Eq. (21), i.e., no rotation occurs, after the orthogonality
property of the FMPs is applied, then the relationship
among the new scaled pupil coefficients bnm in relation
to the unscaled pupil coefficients anm is expressed as

bnm =
1√

ε Nm
n

N
∑

k=0

akm N
m
k

[

R
2n+1
2k+1 (

√
ε)−R2n+3

2k+1 (
√

ε)
]

.

(22)

Equation (22) describes the new scaled FMP expansion
in terms of the radial components of the ZPs. Notice
that Rm

n (r) = 0 for m > n, and the range of the sum in
Eq. (22) can be reduced from k = n to N .

Meanwhile, the Schwiegerling[11] results were used to
evaluate the pseudo-Zernike coefficients for the scaled
pupils; these results are the same as those that we derived
for the FMP expansion. Table 1 shows the coefficients
bnm for the scaled pupil in terms of the unit pupil using
the proposed method based on the FMP expansionand
the Schwiegerling method based on the PZP expansion
up to the fifth order, which is the same. Using the nor-
malized Zernike coefficients for the scaled pupils based
on the similar technique[10]yields

bnm =
1

Nm
n

N
∑

k=n

akm N
m
k

[

R
n
k (ε)−Rn+2

k (ε)
]

, (23)

where N − k is an even integer. Table 2 shows the
coefficients of the scaled pupils based on the ZP expan-
sion up to the fifth order.

A couple of experiments were used to validate the pro-
posed derived formula. The first experiment compared
the difference between the coefficients of the Zernike
radial polynomials and those of the FMPs because the
scaling factor, ε, varies between zero and one. Figure 2
shows the case of low-order coma where we scale b31 with
a31 = a41 = a51 = 2π(0.016). Table 1 indicates that b31

for the scaled pupil using FMPs depends on all of the
unscaled coefficients (a31, a41, and a51), whereas Table 2
shows that the same scaled coefficient using ZPs depend
son only two unscaled coefficients (a31 and a51).

In the second experiment, a full pupil wavefrontwas
considered by the sum of the primary spherical aberra-
tion, coma, and astigmatism in terms of the radial ZPs
as

W (r, θ)=
√

6R
2
2(r) cos(2θ)+

√
8R

1
3(r) cos(θ)+

√
5R

0
4(r).
(24)

Table 1. Similar Coefficients bnm for the Scaled
Pupil in Terms of the Unit Pupil (Unscaled) Using
FMPs (Proposed Method) and PZPs (Schwiegerling

Method) up to the Fifth Order (N=5). m is a
Non-negative Integer.

n bnm

0 a0m + (ε − 1) ·
ˆ

2
√

2 a1m +
√

3 (5ε − 3) a2m +4
`

7 ε
2 −8ε + 2

´

a3m

+
√

5
`

42 ε
3 −70 ε

2 +35ε − 5
´

a4m +2
√

6
`

66 ε
4 −144 ε

3 +108 ε
2 −32ε + 3

´

a5m

˜

1 ε
˘

a1m +
√

2 (ε − 1)
ˆ

2
√

3 a2m +2 (7ε − 5) a3m +
√

5
`

24 ε
2 −32ε + 10

´

a4m +
√

6
2

`

165 ε
3 −315 ε

2 +189ε − 35
´

a5m

˜¯

2 ε
2

n

a2m + (ε−1)
√

3

ˆ

12 a3m +3
√

5

(9ε − 7) a4m +2
√

6
`

55 ε
2 −80ε + 28

´

a5m

˜¯

3 ε
3

˘

a3m +2 (ε − 1)
ˆ

2
√

5a4m
+
√

6 (11ε − 9)a5m

˜¯

4 ε
4

ˆ

a4m +2
√

30 (ε − 1) a5m

˜

5 ε
5
a5m

Table 2. Coefficients bnm for the Scaled Pupil in
Terms of the Unit Pupil (Unscaled) Using ZPs (Dai

Method) up to the Fifth Order (N=5). m is a
Non-negative Integer.

n bnm

0 a0m +
`

ε
2 −1

´ ˆ√
3 a3m +

√
5

`

2ε
2 −1

´

a4m

˜

1 ε
˘

a1m +
`

ε
2 −1

´ ˆ

2
√

2a3m
+
√

3
`

5ε
2 −3

´

a5m

˜¯

2 ε
2

ˆ

a2m +
√

15
`

ε
2 −1

´

a4m

˜

3 ε
3

ˆ

a3m +2
√

6
`

ε
2 −1

´

a5m

˜

4 ε
4
a4m

5 ε
5
a5m
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Fig. 2. Scaling lower-order coma b31 when a31 = a41 = a51 =
2π(0.016).

Fig. 3. (a) Wavefront contour map of the function described
in Eq. (24) and (b) wavefrontreconstruction error as a func-
tion of the total number of orders.

Figure 3(a) presents the wavefront contour map of Eq.
(24). The radial Zernike coefficients of the wavefront
were calculated using ZPs, and the FMP coefficients
of the same wavefront were calculated with Eq. (16).
Figure 3(b) shows the reconstruction error of the recon-
structed wavefront using ZP and FMP coefficients as a
function of the total number of orders, N . In the wave-
front reconstruction with FMPs, all of the radial orders
n = 0, 1, 2, . . . , N were used. In the reconstruction with
ZPs, all the permissible orders n satisfying the conditions

N > n and N −n =even were used. With the same total
number of orders N = 30, the FMPs yield a considerably
lower reconstruction error compared with the ZPs.

In conclusion, the proposed FMPs represent a new set
of basis functions that are orthogonal over the continuous
unit circle. The derived formula for the Fourier–Mellin
coefficient expansion corresponding to a scaled circu-
lar pupil is equal to the formula of the pseudo-Zernike
coefficient expansion derived by Schwiegerling. Finally,
the radial component of the ZPs depends on both the
radial degree and the azimuthal frequency, whereas the
radial component of the FMPs only depends on the ra-
dial degree, which is easy to implement. Moreover, the
proposed FMPs produce considerably lower wavefront
reconstruction error compared with the ZPs for the same
total number of orders.

This work was supported by the Engineering Fac-
ulty of the University of Malaya under Grant No.
UM.C/HIR/MOHE/ENG/42.

References

1. F. Zernike, Phys. 1, 689 (1934).

2. R. Navarro, J. Arines, and R. Rivera, Opt. Express 17,
24269 (2009).

3. X. Pan, S. P. Veetil, C. Liu, Q. Lin, and J. Zhu, Chin.
Opt. Lett. 11, 021103 (2013).

4. S. Niu, J. Shen, W. Liao, C. Liang, and Y. Zhang, Chin.
Opt. Lett. 11, 022201 (2013).

5. A. Khotanzad, and Y. H. Hong, IEEE Trans. Pattern
Anal. Mach. Intell. 12, 489 (1990).

6. X. Gao, Q. Wang, X. LI, D. Tao, and K. Zhang, IEEE
Tans. Image Process. 20, 2738 (2011).

7. Z. Liu, Q. Li, Z. Xia, and Q. Wang, Appl. Opt. 51, 7529
(2012).

8. Y. Sheng and L. Shen, J. Opt. Soc. Am. A 11, 1748
(1994).

9. G.-M. Dai, J. Opt. Soc. Am. A 23, 539 (2006).

10. A. J. E. M. Janssen and P. Dirksen, J. Micro/Nanolith.
MEMS MOEMS 5, 030501 (2006).

11. J. Schwiegerling, Opt. Lett. 36, 3076 (2011).

12. G. A. Papakostas, Y. S. Boutalis, D. A. Karras, and B.
G. Mertzios, IET Comput. Vis. 1, 11 (2007).

080101-4


