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Image matching is an important question in computer vision, however, due to the large viewpoint and
similar regions, there exist false matches. A robust matching method-DelTri is proposed. Based on the
initial matching of Scale Invariant Feature Transform, the matched keypoints are respectively triangulated
to create the triangulation net, which can express the overlapped physical structure of the objects. The
matched triangles can lead to the final matches. Compared with classical RANSAC, experiments show
that DelTri can improve the match robustness, including matching accuracy and magnitude efficiency.
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As a fundamental problem of computer vision, image
matching is to determine point correspondences between
two images of the same scene or object!!). The vast ap-
plications involve location recognition, facial recognition,
object recognition, motion understanding, change detec-
tion, among others.

A wide variety of interest point and corner detectors
exist in the literature. They can be divided into three
categories: contour based, intensity based and paramet-
ric model based methods!?. Among the intensity based
methods, the first one uses non-linear filter, such as SU-
SAN corner detector; the second one is based on cur-
vature of planar curves, such as Kitchen and Rosen-
feld’s method. The typical one is Harris and Stephens’
method. Lowel®! proposed a scale invariant feature trans-
form (SIFT), which combines a scale invariant region de-
tector and a descriptor based on the gradient distribution
in the detected regions. The descriptor is represented by
a 3D histogram of gradient locations and orientations.
The main advantage of SIFT is that it is able to detect
and describe local features that are invariant to scaling
and rotation.

The problem of outliers in structure and motion recov-
ery from images is well known in the literature. The
RANSAC(Random Sample Consensus) paradigm pro-
posed by Fischler et al.l¥ detects outlying data by first
randomly selecting samples of the minimum number of
data items required to estimate a given entity and then
looking for consensus of the estimates among the sam-
ples. However, For large viewpoints, the (non-cyclo)
rotation of the camera about the optical centre is sig-
nificant. There may be severe projective distortion due
to differing perspective foreshortenings of the plane in
each image. Previous works!®! did not consider the per-
spective distortion caused by large viewpoints. Delaunay
triangulations pervade computer vision. They not only
provide a convenient and robust neighbourhood repre-
sentation for Voronoi tessellations of the image plane,
but also provide a powerful geometric representation for
volumetric information. Based on the uniqueness of De-
launay triangulation[® for an image and the similarity of
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triangulations for the same scene in different images, In
this letter, a robust matching method-DelTri is proposed.

RANSAC is a robust estimator originally proposed by
Fishcler and Bolles in 1981!6) where it was used to derive
a usable model from a set of data. In Ref. [7], RANSAC
is used to filter out the incorrectly mapped points that
come from the imprecision of the SIFT model. RANSAC
starts by assuming some transformation model (typically
affine or perspective).

The first parameter for RANSAC is the distance
threshold ¢. The common method to determine it is
based on statistical theory. Firstly, assume that the dis-
tribution of effective point under transformation model
according to the distance is known, we calculate the dis-
tance threshold ¢ such that the probability of effective
point in point set is a. Suppose the distribution satisfies
the zero mean and variance o of the Gaussian distribu-
tion, we can compute the value ¢. In this case, the square
distance between points is d2, which is the square sum of
Gaussian variant, is meet the y2, (Chi-square Distribu-
tion) that has m degrees of freedom. Based on the inte-
gral property of Chi-square Distribution, the probability
of random variable that obeys the Chi-square Distribu-
tion is lower than the integral upper limit, the formal is
as

]C2
Fu(k?) = [ (e < k2 1)
0
the distance threshold ¢ can be caculated by
t* = F, (a)o?, (2)

Then, we can classify the point set into effective point

and invalid point.
effective point d* < t?

N 3)
invalid point d“ >t

The second parameter for RANSAC is the number of
iterations IV, is chosen high enough to ensure that the
probability p (usually set to 0.99) that at least one of the
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sets of random samples does not include an outlier. Let
u present the probability that any selected data point is
an inlier and v = 1 — u is the probability of observing an
outliers. N iteration of the minimum of points denoted
are required, where

L—p=(1—u™), (4)
And thus with some manipulation,

~ log(1-p)
= Togll - (1= 0] )

The consume time of RANSAC can be calculated as fol-
lows:

T =N(Tc + MTEg). (6)

where T is the time spent on generating a hypothesis,
TE is the time spent on evaluating the hypothesis for each
data, M is the number of whole data.

Let P = {p1,---,pn} be a set of points in R%. The
Voronoi cell associated to a point p;, denoted by V(p;),
is the region of space that is closer from p; than from
other points in P8

Vpi)={pe R":Vj#illp—pll <llp—pjll. (7

where V(p;) is the intersection of n — 1 half-spaces
bounded by the bisector planes of segments [p;p;], j #
i. Therefore, V(p;) is a convex polytope, possibly un-
bounded. The Voronoi diagram of P, denoted by Vor(P),
is the partition of space induced by the Voronoi cells
V(ps).

Triangulation is a process that takes a region of space
and divides it into subregions. The space may be of any
dimension, however, a 2D space is considered here since
we are dealing with 2D points. In this case, the subre-
gions are simply triangles. Euler formula of Triangulation
is

f —e+v= 15 (8)
where f is the number of facet; e is the number of edges,
v is the number of vertex. The complexity of n points
P constructed triangulation has Ny,; triangles and Negge
edges. In this case, compared with (8), e = Nedge.

Nui=2n—2—k, (9)
Nedge = 3n— 3 — k, (10)

where k is the number of points P in on the convex hull
of P.

The Delaunay triangulation Del(P) of P is defined as
the geometric dual of the Voronoi diagram: there is an
edge between two points p; and p; in the Delaunay tri-
angulation if and only if their Voronoi cells V(p;) and
V(p;) have a non-empty intersection. It yields a triangu-
lation of P, that is to say a partition of the convex hull of
P into d-dimensional simplices (i.e. into triangles in 2D,
into tetrahedra in 3D, and so on). The formula of Del(P)
s (11). Figure 1(a) displays an example of a Voronoi di-
agram and its associated Delaunay triangulation in the
plane.

Del(P) = {T(pi,pj, pr)Ipi € P,pj € P,px € P,

C(pi,pj.rr) N P\(pi,pj, pr) = ¢} (11)

where C(p;,pj,px) is the circle circumscribed by three
vertices p;,pj,pr, which form a Delaunay Triangle
T(pi, pj» Pk)

The algorithmic complexity of the Delaunay triangula-
tion of n points is O(nlogn) in 2D, Figures 1(b) and
(c) Show the created Delaunay Triangulations using 20
discrete points.

Compared with DelTri algorithm, it can be seen that
RANSAC algorithm selects samples randomly. The ran-
dom sampling has some disadvantages: it increases the
number of iterations. Above all, there are three problems
for RANSAC: firstly, there is no upper bound on the time
it takes to compute the transformation model parame-
ters; secondly, the number of iterations N computed is
limited the solution obtained may not be optimal, and
it may not even be one that fits the data in a good way;
finally, it requires the setting of problem-specific thresh-
olds.

The Delaunay triangulation has many known prop-
erties that make it the most widely-used triangulation.
Our choice of Delaunay triangulation as a space subdi-
vision for image matching is motivated by the following
remarkable property: under some assumptions, and es-
pecially if P is a “sufficiently dense” sample of a surface,
in some sense defined, then a good approximation of
the surface is “contained” in Del(P), in the sense that
the surface can be accurately represented by selecting an
adequate subset of the triangular facets of the Delaunay
triangulation.

When the viewpoints are increasing, the number of
correct matches will go down quickly for the SIFT algo-
rithm. The reason is that due to large viewpoint, the
similarity of the SIFT descriptor will become small. In
order to enhance the resist the changes caused by large
viewpoint, in this letter, we exploit the structure of the
overlapped regions for different images, if we can use a
certain number of discrete points to express the similar

®) ©

Fig. 1. (Color on line) (a) Voronoi diagram (gray edges) of
a set of 2D points (red dots) and its associated delaunay tri-
angulation (black edges). (b) Delaunay triangulation discrete
points (20). (c)Triangulated meshes.
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scene such as by certain methods, we will see that, the
structure is unique. Based on this fact, we introduce the
Delaunay triangulation of discrete points. The Delau-
nay triangulation has the property of uniqueness which
is fit for the work. Because the triangle has three sides,
we can choose the correct matches based on triangle or
lines. Through this, we can achieve the robust matching
based on Delaunay Triangulation. Figures 2(a) and (b)
show six of detected keypoints. The two source images
are acquired from a very large viewpoint, due to unique-
ness of Delaunay triangulation, the matches can be stably
tracked. Figures 2(c) and (d) show the triangulation net
created by the Delaunay Triangulation. For RANSAC
method, the number of matches is zero which is shown
Fig. 2(f).

The proposed algorithm can be expressed as follows:

1) SIFT descriptors X = {z1, 72, -+ ,2,}7T for the ex-
tracted feature points from the input images I; and I
according to the SIFT algorithm.

2) The Euclidian distance between SIFT descriptors is
employed to determine the initial corresponding feature
point pairs.

3) Delaunay Triangulation between the input images
I, and Iy according to the initial corresponding feature
point pairs by step 2).

4) Classify the inliers based on triangles of the Delau-
nay triangulation and finally get the correct correspond-
ing feature point pairs.

We assume that the transformation between the input
images is projective transformation which can be defined
as:

zh T
yh | =H | y |, (12)
k 1

Fig. 2. Six keypoints for image 1(a) and image 2(b). Triangu-
lation net from six keypoints for image 1(c) and image 2(d).
Match result by our method (e) and by RANSAC (f).

hit hiz his
H=| hor hoa hos |. (13)
h31 hza hasz

The non-homogeneous coordinates (2’,y’) are computed
as

o — zh _ hux+ higy + hag

k' haix+ haoy + has’

) yh _ ho1x A hooy + hos
k  hgiz + haoy + has’

where (2/,y') < (z,y) are pixel point correspondences
and H is homography transformation matrix. Using
the transformation matrix, the symmetric transfer error
d(z,H'2')? + d(2',Hz)? is calculated for every match-
ing point, and the inliers that are less than the threshold
value are counted. Here d(z,y) is the Euclidean distance
between points x and y.

For the three image pair, we use the epipolar con-
straints and considered the match (X,Y) was a correct
match using the evaluation metrics as follows:

(14)

Ix = FTy, (16)
ly = FX, (17)

where d(X,lx) was the distance from point X to the
epipolar line [x which obtained by Y and fundamental
matrix F', accurate fundamental matrix F' between each
image pair was calculated from some handpicked control
point pairs, so is d(Y,ly), and choose d; = 2.

In order to verify the effectiveness of the proposed
algorithm, experimental results of sets of images from
Ref. [10] are given below. ZuBuD is a database of color
images of 201 buildings in Zurich city. Each building is
represented by five snapshot taken from five different
viewpoints. Illumination conditions vary for different
buildings. Tests were conducted using some of 550 image
pairs from the Zurich Building Database. The tested
image sets are resized into 320x240. The threshold of
SIFT initial matching is 0.6, the distance threshold for
deciding outliers for RANSAC is ¢t = 0.004, Maximum
number of iterations is 1000.

We choose one group of images to test the pro-
posed methods. Figure 3 shows the image set taken
at different viewpoint and Fig. 3(a) is a reference image
and Figs.3(b)—(d) are real images. Image pairs 1 is re-
ferred to Fig.3(a) and (b); Image pairs 2 is referred to
Fig.3(a) and (c); Image pairs 3 is referred to Fig.3(a)
and (d). Figures 4 and 5 show the matching result of im-
age pairs 3 for RANSAC method and DelTri approach.
We choose image pairs 3 to test the method because
the two images have large viewpoints which show great
projective distortion and result in mismatches. Figure
4(a) show the initial matched key points by SIFT. From
the match result, we can see that due to large view-
points or repetitive patterns on the scene, there exist a
certain number of false matches. We used RANSAC to
filter the wrong matches. Figure 4(b) shows the result
by RANSAC. Figure 4(c) shows the result by DelTri
method. Figures 5(a) and (b) show the Delaunay Trian-
gulation Net of the two images of Figs. 3(a) and (d) from
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Fig. 4. (a) Initial matching by SIFT (34/91); (b) fine match-
ing by RANSAC (20/31); and (c) matching by our proposed
method (30/64).

initial matched points from Fig. 5(c). Due to the unique-
ness of Delaunay Triangulation on overlapped region of
the Image pairs 3, our method can overcome the changes
caused by different viewpoint at a certain degree. The
number of final matched triangles are shown in Fig. 5(c)
and (d). From table 2, we can see that the final correct
ratio for RANSAC is 58.8% while the DelTri is 88.2%.
Because RANSAC algorithm selects samples randomly,
it can not make sure that the selected samples are all
correct and can calculate the homography correctly. In

order to test how the randomly selected samples affect
the matching accuracy, compared with DelTri method,
we both run RANSAC and DelTri 40 times based on
initial matching of SIFT for image pairs 3 and at each
time to calculate the correct ratio of result matches for
both method. We also calculate the computation time
at each time. Figure 6(a) shows that the correct ra-
tio of DelTri is higher than RANSAC, while Fig.6(b)
shows the computation time for each time, the average
consume time of DelTri is 0.14s and RANSAC 1.10 s.
The distance threshold ¢ for RANSAC is changed from
0.001 to 0.01, the correct ratio of result matches and
computation time versus distance threshold are shown in
Figs.6(c) and (d). The reason is that the disadvantage
of random samples for RANSAC and the uniqueness of
Delaunay Triangulation for the same scene or object.
The final result for image pairs1-3 was shown in Tables
1 and 2. Table 1 show the Initial matches obtained by

(D

Fig. 5. (a) Delaunay triangulation net of Fig.4(a) (160 tri-
angles); (b) delaunay triangulation net of Fig.4(d) (143 tri-
angles); (c¢) matched triangles (51) of Fig.5(a); (d) matched
triangles (51) of Fig. 5(b).
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Fig. 6. Comparison of accuracy and computation time for
RANSAC and DelTri.
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the SIFT algorithms and the correct ratio of matches
decided by epipolar constraints. Table 2 compares the
computation time and matching accuracy of the two
methods. We can see that the high correct ratio matches
were efficiently obtained by proposed method, and also
the computation time can decreased for some image pairs
1 and image pairs 2. From the experiment results we can
see that our proposed method is effective and can im-
prove the matching accuracy .

In conclusion, this letter presents a robust matching-

Table 1. SIFT Initial and Correct Matches for
Image Pairs1-3 (Fig. 4)

. Image Image Image
Image Pairs
Pairs 1  Pairs 2  Pairs 3
Key Points 781/835 781/957 781/925
Num of Initial Matches 339 118 91
Num of Correct Matches 292 69 34
C t Ratio of
orrect Ratio o 86.1%  58.5%  37.3%

Initial Matches

Table 2. Comparison of Matching Methods

Image

Pairs 1 Pairs 2 Pairs 3

Image Image

Image Pair

Num of
Correct Matches
Computation Time  5.32 7.07 6.65
RANSAC Correct Ratio of
Result Matches

220(201) 36(24) 31(20)

SIFT+

68.8%  34.7% 58.8%

Num of
270(205) 85(49) 64(30)
Correct Matches

SIFT+ Computation
Delaunay Time
Correct Ratio of

Result Matches

6.96 6.21 5.95

70.2%  71.0% 88.2%

DelTri approach to deal with the false matching prob-
lem caused by large viewpoints and similar region. Our
approach detects inliers and outliers based on the Delau-
nay triangulation. By exploiting the Delaunay triangu-
lation uniqueness property we are able to create a robust
efficient matching algorithm without the inefficiencies
inherent in fit-and-test approaches. Compared with clas-
sical RANSAC, experiment shows the effectiveness of
proposed method.
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