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Using the thermal field dynamics theory to convert the thermal state into a “pure” state in doubled Fock

space, we find that the average value of e
fa†a under squeezed thermal state (STS) is just the generating

function of Legendre polynomials. Based on this remarkable result, the normalization and photon-number
distributions of m-photon added (or subtracted) STSs are conviently obtained as the Legendre polynomials.
This new concise method can be expanded to the entangled case.
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The nonclassicality of optical fields is helpful in under-
standing the fundamentals of quantum optics and has
many applications in quantum information processing[1].
The subtraction or addition of photons from/to tra-
ditional quantum states or Gaussian states has been
proposed to generate and manipulate various nonclas-
sical optical field[2−11]. For example, photon addi-
tion and subtraction have been experimentally demon-
strated to probe quantum commutation rules[9]. Re-
cently, photon-added (-subtracted) Gaussian states have
received more attention from both experimentalists and
theoreticians[12−21], because these states exhibit number-
ous nonclassical properties and may provide access to a
complete engineering of quantum states and fundamental
quantum phenomena.

Theoretically, the normalization factors of such quan-
tum states are essential for studying their nonclassi-
cal properties. Very recently, Fan et al.[22] presented a
new concise approach for normalizing m-photon-added
(-subtracted) squeezed vacuum state (pure state) by con-
structing a generating function. However, most systems
are not isolated, are immersed in a thermal reservoir,
and thus, we often have no enough information to spec-
ify completely the state of a system. In such situations,
the system only can be described by mixed states, such as
thermal states. In addition, the squeezed thermal states
(STSs) can be considered as the generalized Gaussian
states.

In this letter, we shall extend this case to the mixed
state, i.e., by using the thermal field dynamics (TFD)
theory to convert the thermal state into a “pure” state in
doubled Fock space. We present a new concise method for
normalizing photon-added (-subtracted) STSs (PASTSs,
PSSTSs) and deriving their photon-number distributions
(PNDs), which have been a major topic of studies on
quantum optics and statistics. The normalization fac-
tors and PNDs were found to be related to the Legendre
polynomials in compact form.

We begin by briefly reviewing the properties of a ther-

mal state. For a single mode with frequency ω in a ther-
mal equilibrium state corresponding to absolute temper-
ature T , the density operator is

ρth =

∞∑

n=0

nn
c

(nc + 1)
n+1 |n〉 〈n| , (1)

where nc = {exp[~ω/(kT )] − 1}−1 is the average photon
number of the thermal state ρth and k is the Boltzmann’s
constant. |n〉 = a†n/

√
n! |0〉 and the normally ordering

form of vacuum projector |0〉 〈0| =: exp(−a†a) : (the
symbol : : denotes normal ordering). One can express
Eq. (1) as

ρth =:
1

nc + 1
e−

1
nc+1

a†a : =
1

nc + 1
ea†a ln nc

nc+1 , (2)

where in the last step, the operator identity
exp

(
λa†a

)
=: exp

[(
eλ − 1

)
a†a

]
: is used.

The elemental spirit of the TFD introduced by Taka-
hashi et al.[23−25], is to convert the calculations of ensem-
ble averages for a mixed state ρ, 〈A〉 = tr (Aρ) /tr (ρ) ,
where tr denotes the trace operation over the system,
to the equivalent expectation values with a pure state
|0(β)〉, i.e.

〈A〉 = 〈0(β)|A |0(β)〉 , (3)

where β = 1/kT and k is the Boltzmann’s constant.
Thus, for the density operator ρth, using the partial trace
method in Ref. [26], i.e., ρth = t̃r [|0(β)〉 〈0(β)|], where

t̃r denotes the trace operation over the environment free-
dom (denoted as operator ã†), one can obtain the explicit
expression of |0(β)〉 in doubled Fock space

|0(β)〉 = sechθ exp
(
a†ã† tanh θ

) ∣∣00̃
〉

= S (θ)
∣∣00̃

〉
, (4)

where
∣∣00̃

〉
is annihilated by ã and a, [ã, ã†] = 1, and

S (θ) is the thermal operator. S (θ) ≡ exp
[
θ
(
a†ã† − aã

)]

and has a similar form to that of a two-mode squeezing
operator except for the tilde mode, and θ is a parame-
ter related to the temperature by tanh θ = exp

(
− ~ω

2kT

)
.
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|0(β)〉 is named as the thermal vacuum state.

Let Tr = trt̃r. Then

tr (Aρth) = Tr [A |0(β)〉 〈0(β)|]
= tr

[
At̃r |0(β)〉 〈0(β)|

]
, (5)

and the average photon number of the thermal state ρth

is
nc = Tr

[
a†a |0(β)〉 〈0(β)|

]
= sinh2 θ. (6)

Here we should emphasize that t̃r |0(β)〉 〈0(β)| 6=
〈0(β)| 0(β)〉 , |0(β)〉 involves both real and fictitious
modes a and ã. Equations (3) and (4) show that the
worthwhile convenience in Eq. (4) is at the expense of
introducing a field (or called a tilde-conjugate) in the ex-
tended Hilbert space, i.e., the original optical state |n〉 in
the Hilbert space H is accompanied by a tilde state |ñ〉
in H̃. A similar rule holds for the operators: Bose anni-
hilation operator a acting on H has an image ã acting on
H̃. These operators in H are commutative with those in
H̃.

To realize our purpose, we introduce the squeezed
thermal vacuum state, as S1 (r) |0(β)〉, where S1 (r) =
exp[r(a2 − a†2)/2] is the single-mode squeezing operator
for the real mode with r being the squeezing parameter.
Considering Eq. (4) and the Baker-Hausdorff lemma

S1(r) a†S†
1 (r) = a† cosh r + a sinh r, (7)

we then obtain

S1(r) |0(β)〉 = sech θ sech1/2r exp[
(
a† cosh r + a sinh r

)

ã† tanh θ] × exp

(
−a†2

2
tanh r

) ∣∣00̃
〉
, (8)

where we have used S1 (λ) |0〉 = sech1/2λ exp(−a†2/2

tanhλ) |0〉 . Furthermore, note that eτaã†

a†e−τaã†

=
a† + τã† and operators A and B satisfy the condi-
tions [A, [A, B]] = [B, [A, B]] = 0, we have eA+B =
eAeBe−[A,B]/2. Thus, Eq. (8) can be expressed as

S1 (r) |0(β)〉 = sechθsech1/2r exp

[
tanh θ

cosh r
a†ã†

+
tanh r

2

(
ã†2 tanh2 θ − a†2

)] ∣∣00̃
〉
. (9)

Next, we shall use Eq. (9) to derive the average

of operator efa†a under the squeezed thermal vacuum
state S1 (r) |0(β)〉, which is a bridge for our calcula-

tions. Notice that ef/2a†aa†e−f/2a†a = a†ef/2 and
e−f/2a†aaef/2a†a = aef/2. Hence we have

ef/2a†aS1 (r) |0(β)〉 = sechθsech1/2r exp

[
tanh θ

cosh r
a†ã†ef/2

+
tanh r

2

(
ã†2 tanh2 θ − a†2ef

)] ∣∣00̃
〉
,

(10)

which leads to

〈efa†a〉 ≡ 〈0(β)|S†
1 (r) efa†aS1 (r) |0(β)〉

=
(
Ce2f − 2Bef + A

)−1/2
, (11)

where we have set A = n2
c + (2nc + 1) cosh2 r, B =

nc (nc + 1) , and C = n2
c − (2nc + 1) sinh2 r. Moreover

we have used the completeness relation of coherent state∫
d2zd2z̃ |zz̃〉 〈zz̃| /π2 = 1, where |z〉 and |z̃〉 are the co-

herent states in real and fictitious modes, respectively,
and the following formula[27]

∫
d2z

π
exp(ζ |z|2 + ξz + ηz∗ + fz2 + gz∗2)

=
1√

ζ2 − 4fg
exp

[−ζξη + ξ2g + η2f

ζ2 − 4fg

]
, (12)

whose convergent condition is Re(ζ ± f ± g) < 0 and
Re(ζ2 − 4fg)/(ζ ± f ± g) < 0. Equation (11) is very
important for the calculation of PND and normalization
of PASTs and PSSTs.

Interestingly the standard generating function of Leg-
endre polynomials[28] is given by

1√
1 − 2xt + t2

=
∞∑

m=0

Pm (x) tm. (13)

Thus comparing Eq. (11) with Eq. (13), we obtain

〈efa†a〉 = A−1/2
∞∑

m=0

Pm

(
B/

√
AC

)(√
C/Aef

)m
, (14)

which indicates that the average value of efa†a under STS
is just the generating function of Legendre polynomials.
Next, we shall examine the normalizations and PNDs of
PASTSs and PSSTSs using Eqs. (11) and (14).

The m-photon-added scheme, denoted by the mapping
ρ → a†mρam, was first proposed by Agarwal et al.[4].
Here, we introduce the PASTS. Theoretically, the PASTS
can be obtained by repeatedly operating the photon cre-
ation operator a† on a STS so that its density operator
is given by

ρad = C−1
a,ma†mS1ρthS†

1a
m, (15)

where m is the number of added photons (a non-negative
integer) and C−1

a,m is the normalization constant to be de-
termined.

A quantum state should be normalization for us to de-
scribe it fully. Next, we shall employ Eqs. (5), (11), and
(14) to realize our aim. According to the normalization
condition trρad = 1 and the TFD, we have

Ca,m = 〈0(β)|S†
1a

ma†mS1 |0(β)〉 , (16)

which implies that the calculation of normaliation factor
Ca,m is converted to a matrix element after introducing
the thermal vacuum state |0(β)〉.

Considering the operator identity[29] eτa†a =

e−τ
... exp[(1 − e−τ )a†a]

..., we obtain

∞∑

m=0

τm

m!
ama†m =

...eτa†a
... =

(
1

1 − τ

)a†a+1

, (17)
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where the symbol
...
... denotes antinormal ordering. Thus,

using Eqs. (11), (16), and (17), (ef → 1
1−τ ), we have

∞∑

m=0

τm

m!
Ca,m =

[
Aτ2 − 2Dτ + 1

]−1/2
, (18)

where D = nc cosh 2r + cosh2 r.
Comparing Eqs. (18) with (13), and taking τ ′ →

√
Aτ ,

we obtain

∞∑

m=0

τ ′m Ca,m

m!Am/2
=

∞∑

m=0

Pm

(
D/

√
A

)
τ ′m, (19)

thus the normalization constant of PASTSs is given by

Ca,m = m!Am/2Pm

(
D/

√
A

)
, (20)

which is identical to the result in Ref. [30]. Note that
for the case of no-photon-addition with m = 0, Ca,0 = 1,
as expected. In the case of an m-photon-added thermal

state (no squeezing) with D = nc+1, A = (nc + 1)
2
, and

Pm (1) = 1, Ca,m = m! (nc + 1)m . This result is consis-
tent with that of Eq. (32) in Ref. [31]. In addition, when
r = 0, corresponding to a photon-added thermal state,
Eq. (20) only reduces to Ca,m = m! cosh2m θ[31].

The PND is a key characteristic of every optical field.
The PND, i.e., the probability of finding n photons in
a quantum state described by the density operator ρ,
is P(n) = tr [|n〉 〈n| ρ]. Similar to Eq. (20), consid-

ering that am |n〉 =
√

n!/(n − m)! |n − m〉 and |n〉 =

a†n/
√

n! |0〉 , the PND of the PASTSs can be calculated
as

Pa(n) = C−1
a,mtr

[
|n〉 〈n|a†mS1ρthS†

1a
m

]

=
n!C−1

a,m

(1!)
2 〈0(β)|S†

1a
†l |0〉 〈0|alS1 |0(β)〉 , (21)

which leads to

∞∑

l=0

τ l l!

n!
Ca,mPa(n) = 〈0(β)|S†

1e
a†a ln τS1 |0(β)〉 , (22)

where l = n − m and vacuum projector op-

erator |0〉 〈0| =: e−a†a : and operator identity

eλa†a =: exp[(eλ − 1)a†a] : are used.
Using Eq. (11) again (ef → τ) and comparing Eq.

(22) with Eq. (13) we obtain

∞∑

l=0

τ l l!

n!
Ca,mPa(n) = A−1/2

∞∑

l=0

Pl

(
B/

√
AC

)(√
C/Aτ

)l
,

(23)
which leads to the PND of PASTSs

Pa(n) =
n!C−1

a,m (C/A)
(n−m)/2

(n − m)!
√

A
Pn−m

(
B/

√
AC

)
, (24)

which is a Legendre polynomial with a condition n > m,
this result implies that the photon-number (n) involved
in PASTSs is always not less than the photon-number

(m) operated on the STSs, and that no photon distribu-
tion exists when n < m. When m=0 corresponding to the
STS, the PND of STS is also a Legendre distribution[32].

Next, we discuss the PSSTS, defined as

ρsb = C−1
s,mamS1ρthS†

1a
†m, (25)

where m is the subtracted photon number (a non-
negative integer) and Cs,m is a normalized constant.

Similarly to deriving Eq. (20), we have

Cs,m = 〈0(β)|S†
1a

†mamS1 |0(β)〉 . (26)

Hence employing eλa†a =: exp[(eλ − 1)a†a] : and Eq.
(11) (ef → 1 + τ), we dotain

∞∑

m=0

τm

m!
Cs,m = 〈0(β)|S†

1e
a†a ln(1+τ)S1 |0(β)〉

=
[
Cτ2 − 2Eτ + 1

]−1/2
, (27)

where E = 1
2 [(2nc + 1) cosh2r − 1] . By comparing Eq.

(27) with Eq. (13), we yield

Cs,m = m!Cm/2Pm

(
E/

√
C

)
, (28)

which is the normalization factor of PSSTSs. When
r = 0, corresponding to photon-subtracted thermal state,
Eq. (28) only reduces to Cs,m = m! sinh2m θ[31].

Similarly to deriving Eq. (24), the PND of PSSTSs is
given by

Ps(n) = C−1
s,m 〈0(β)|S†

1a
†m |n〉 〈n| amS1 |0(β)〉

=
1

n!
C−1

s,m 〈0(β)|S†
1 : a†m+nam+ne−a†a : S1 |0(β)〉 ,

(29)

so (k = m + n)

∞∑

k=0

τk

k!
n!Cs,mPs(n) = 〈0(β)|S†

1e
a†a ln τS1 |0(β)〉 , (30)

which leads to the PND of PSSTSs

Ps(n) =
(m + n)!

n!Cs,m

√
A

(C/A)
m+n/2

Pm+n

(
B/

√
AC

)
, (31)

which a Legendre polynomial. The result is similar to
that of Ref. [32].

In conclusion, we present a new concise approach for
normalizing m-photon-added (-subtracted) STSs and
deriving the PNDs, which improve the methods used
in Refs. [30, 32]. We convert the thermal state to
a pure state in doubled Fock space in which the cal-
culations of ensemble averages under a mixed state ρ,
i.e. 〈A〉 = tr (Aρ) /tr (ρ), is replaced by an equiva-
lent expectation value with a pure state |0(β)〉, i.e.,

〈A〉 = 〈0(β)|A |0(β)〉. The average value of efa†a under
STS is just the generating function of Legendre polyno-
mials. Based on this remarkable result, the normalization
and PNDs of m-photon-added (or subtracted) STS are
easily obtained as the Legendre polynomials. The gen-
erating function of the Legendre polynomials and the

average value of efa†a under STS are used thonghout the
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calculations.
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