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Reflective ghost imaging with classical Gaussian-state light
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In this letter, we use quantum description and the Gaussian state to study reflective ghost imaging with
two classical sources, and to provide their expressions. We find that the reflective ghost imaging of a rough-
surfaced object, using Gaussian-state phase-insensitive or classically correlated phase-sensitive light, can
be expressed in terms of the phase-insensitive or phase-sensitive cross-correlations between the two detected
fields, including a background term. Moreover, reflective ghost imaging with two classical Gaussian-state
lights is shown to have similar features as spatial resolution and field of view.
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Ghost imaging is a procedure to indirectly form the image
of an object by photocurrent correlation. This procedure
is called ghost imaging because the photons that pro-
vide the spatial information of the object does not inter-
act directly with the object to be imaged. Transmission
ghost imaging utilizes three sources: maximally entan-
gled phase-sensitive light (e.g., the output of ideal sponta-
neous parametric down-conversion)[1−3], classically cor-
related phase-sensitive light (e.g., two laser with phase-
conjugate modulations imposed on them)[4], and phase-
insensitive light (e.g., pseudothermal or true thermal
state light)[5−7].

Considering the reflective ghost imaging configuration,
an optical source generates a signal beam and a reference
beam by a beam splitter. The signal beam does not inter-
act with the object of interest. After free-space propaga-
tion, its transverse power distribution is measured using
a high-spatial-resolution detector. The reference beam
interacts with the object after the free-propagation and
is measured by a bucket detector. Cross-correlating the
photocurrents from the two detectors yields the ghost
image, the physical origin of which lies in a perfect cor-
relation between the spatial fluctuations imposed by the
source plane on the signal and the reference beams.

Most ghost imaging experiments have been performed
in transmission[1,6−8], and nearly all ghost imaging the-
ories have addressed the transmission case. However, re-
flective ghost imaging is more valuable in application,
such as in the remote sensing technology. Preliminary
tabletop experiments have demonstrated the feasibility of
reflective ghost imaging[9,10]. Several works in reflective
ghost imaging have been achieved using Gaussian-state
pseudothermal and quantum light[11]. However, little ex-
ploration has been conducted on reflective ghost imag-
ing with two classical sources by quantum description,
including a comparison of their features. The Gaussian-
states offer both a practically relevant and a theoretical
convenient framework for studying ghost imaging[11−13];
thus, we utilize the Gaussian state in this letter.

The configuration considered for reflective ghost imag-
ing is shown in Fig. 1. An optical source generates
two scalar, quasi-monochromatic, paraxial, positive-

frequency optical fields: a signal field ÊS(x, t)e−iω0t

and a reference field ÊR(x, t)e−iω0t, with
√

photons/m2s
units and a common center frequency ω0. Here, x is the
transverse coordinate. The commutation relations within
this paraxial approximation for the base-band field op-
erators are[14]

[
Êm(x1, t1), Êl(x2, t2)

]
= 0, (1)

[
Êm(x1, t1), Ê

†
l (x2, t2)

]
= δmlδ(x1 − x2)δ(t1 − t2), (2)

where m, l = S, R; δml is the Kronecker delta function;
δ(· · · ) is the unit impulse.

The reference beam illuminates a rough-surfaced pla-
nar object L− meters away from the beam splitter. The
light reflected from the object is then collected by a
bucket detector after the L− meters’ free-space prop-
agation. The signal light illuminates the high-spatial-
resolution detector (CCD array) after the L− meters’
free-space propagation, from which a 1 : 1 ghost image
is formed.

The photocurrents from the bucket detector and each
pixel on the CCD array are sent to a correlator with
coincidence measurement, of which the output for the
CCD pixel located at transverse coordinate x1 is given by

Fig. 1. Setup for reflective ghost imaging.
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Ĉ(x1) =
1

T1

∫ T1

2

−
T1

2

Î1(t)Î2(t)dt, (3)

where T1 is the averaging time. We suppress a L/c

time delay in Î1(t) needed to account for the delay in-
curred by the reflective light from the object.

Considering two ideal photodetectors assumed to have
identical subunity quantum efficiencies and finite elec-
trical bandwidths, no dark current or thermal noise con-
tributes to the output current. The classical output cur-
rents from the two detectors corresponding to the follow-
ing quantum measurements are given by[15,16]

Îm(t) = q

∫
du

∫

Am

dxÊ†
η,m(x, u)Êη,m(x, u)hB(t − u),

(4)

where m = 1, 2, A1, and A2 denote the area of one pixel
in the signal arm and the photosensitive surface of the
bucket detector; q is the electron charge; hB(t) is a real
impulse response to model the real detector’s finite elec-
trical bandwidth.

Êη,m(x, t) =
√

ηÊm(x, t) +
√

1 − ηÊvac,m(x, t), (5)

where m = 1, 2 and
√

η are the detector’s quantum

efficiencies; Êvac, m is a vacuum-state field operator.

Ê1(x, t) =

∫
dx′ÊS(x′, t)hl(x − x′), (6)

Ê2(x, t) =

∫
dx

′Ê3(x
′, t)hl(x − x′)T (x′), (7)

Ê3(x, t) =

∫
dx

′
ÊR(x′, t)hl(x − x′). (8)

Here, hl(x) is the Huygens–Fresnel–Green’s function:

hl(x) ≡ k
ik0(L+|x|2/2L)

0e

2iπL
, (9)

where k0 = ω0/c is the wave number associated with the
center frequency and T (x′) is the object’s field-reflection
coefficient. We have neglected the time delays.

The objects of interest for reflective ghost imaging will
have microscopic surface variations (i.e., from a nominal,
smooth surface profile) whose standard deviations can
greatly exceed the illumination wavelength and whose
transverse correlation scale can be of subwave length.
When such a surface is illuminated by laser light, a laser
speckle arises in the object return. Here, we use a statis-
tical model for T (x)[17]:

〈T ∗(x1)T (x2)〉 = λ2
0T (x1)δ(x1 − x2), (10)

where λ0 is the center wavelength of the illumination
field; T (x1) is physically the mean square speckle re-
flection coefficient at location x1, which is the object
information sought.

The Ĉ(x1) measurement yields an unbiased estimate

of the ensemble-average equal-time photocurrent cross-
correlation function:
〈
Ĉ(x1)

〉
=

〈
Î1(t)Î2(t)

〉

= A1λ
2
0q

2η2

∫
du1

∫
du2

∫

A2

dx
′

∫
dx2

×
〈
Ê†

1(x1, u1)Ê1(x1, u1)E
†
2(x2, u2)Ê2(x2, u2)

〉

× T(x2)h
∗
l (x

′ − x2)hl(x
′ − x2)

× hB(t − u1)hB(t − u2). (11)

We use the commutation relations (1) and (2) to
put the integrand into normal order. Subsequently,
the Gaussian-state moment-factoring theorem is utilized
to the fourth-order moment[12,18], replacing the fourth-
order moment with expressions that depend only on the
second-order moments of the fields.

〈
Ĉ(x1)

〉
=

A1A2λ
2
0q

2η2

L2

∫
du1

∫
du2

∫
dx2

×
(〈

Ê†
1(x1, u1)Ê1(x1, u1)

〉

×
〈
Ê†

2(x2, u2)Ê2(x2, u2)
〉

+
∣∣∣
〈
Ê†

1(x1, u1)Ê2(x2, u2)
〉∣∣∣

2

+
∣∣∣
〈
Ê1(x1, u1)Ê2(x2, u2)

〉∣∣∣
2 )

× T(x2)hB(t − u1)hB(t − u2). (12)

Thus far, we have opted for the quantum description of
reflective ghost imaging configuration. We now proceed
with the details for each of the two sources.

We calculate the lensless reflective ghost imaging with
phase-insensitive light. We consider the phase-insensitive
correlation propagation in two limiting regimes: the
near field, which corresponds to the region in which
diffraction effects are negligible, and the far field,
in which diffraction spread is dominant. For phase-
insensitive coherence propagation, a single Fresnel
number D0 = k0x0a0/2L distinguishes these regimes;
D0 >> 1 corresponds to the near field and D0 << 1
corresponds to the far field[19]. Here, when a0 is the
beam radius, x0 is the coherence radius.

With phase-insensitive light, the signal and refer-
ence fields have the maximum phase-insensitive cross-
correlations, but no phase-sensitive cross-correlation[13].

〈
Ê†

m(x1, t1)Êl(x2, t2)
〉

= K
(n)
m, l(x1, x2)R

(n)
m, l(t2 − t1),

(13)

〈
Êm(x1, t1)Êl(x2, t2)

〉
= 0, (14)

where m, l = 1, 2 and the superscripts (n) labeled
normally are the ordered phase-insensitive terms. Sub-
stituting Eqs. (13) and (14) into Eq. (12), we obtain

〈
Ĉ(x1)

〉
= C0(x1) + Cn

∫
dx2|K ′(n)

1,2 (x1, x2)|2T (x2),

(15)
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where

C0(x1) =
A1A2λ

2
0q

2η2

L2

· R(n)
1,1 (0)R

(n)
2,2 (0)

[ ∫
hB(t)dt

]2

K
′(n)
1,1 (x1, x2)

·
∫

K
′(n)
2,2 (x2, x2)T (x2)dx2. (16)

This is a featureless background term of reflective ghost
imaging.

Cn =
A1A2λ

2
0q

2η2

L2

[∣∣∣R(n)
1, 2(t)

∣∣∣
2

∗ hB(t) ∗ hB(−t)

]

t=0.

(17)

The second part on the right in Eq. (15) is the reflective
ghost image term. Here, “∗” denotes convolution. The
signal and reference fields are taken for the Gaussian-
Schell model[20]. In the near field, we obtain the maxi-
mum phase-insensitive cross-correlation as given by

K
(n)
m, l(x1, x2)R

(n)
m, l(t2 − t1) =

2P

πa2
0

· eik0(|x2|
2−|x1|

2)/2Le−(|x1|
2+|x2|

2)/a
2

0
−|x2−x1|

2/2x2

0

· e−(t2−t1)
2/2T2

0 , (18)

where T0 is the coherence time.
Substituting Eq. (18) into Eq. (15), we obtain the

following phase-insensitive reflective ghost imaging ex-
pression:

〈
Ĉ(x1)

〉
= C0(x1) + Cn

( 2P

πa2
0

)2

·
∫

e−2(|x1|
2+|x2|

2)/a
2

0
−|x1−x2|

2/x
2

0 T (x2) dx2. (19)

Here, the phase term is removed in the integrand.
With the Gaussian-Schell model source, Eq. (19) shows

that the reflective ghost image in near field has the field
of view a0. The finite cross-correlation coherence length
x0 limits the spatial resolution of the image.

The reflective ghost imaging with the phase-insensitive
light is in the far-field regime, in which D0 << 1. Due
to the diffraction effect, the second-order correlation
functions must be propagated from the source plane to
the detection planes. Fortunately, for Gaussian-Schell
model correlation functions, this transformation is a sim-
ple replacement of a0 by aL = 2L/k0x0 and x0 by
xL = 2L/k0a0. Hence, the far-field ghost imaging of
the phase-insensitive result is given by

〈
Ĉ(x1)

〉
= C0(x1) + Cn

( 2P

πa2
L

)2

·
∫

e−2(|x1|
2+|x2|

2)/a2

L
−|x1−x2|

2/x2

LT (x2) dx2. (20)

As shown, the field of view increases to aL, whereas
the image spatial resolution degrades to

√
2xL in the far

field of the reflective ghost imaging.
Moreover, similar fields of view and spatial resolutions

were found from the previous Gaussian-state analysis for
the near- and far-field transmission of the ghost imag-
ing with a phase-insensitive source[12]. Indeed, the only
difference between Eqs. (19) and (20) and the corre-
sponding result for the transmission case is the factor
A2λ

2
0

/
L2, which appears in the former.

We have now completed the reflective ghost imaging in
the near and far fields with phase-insensitive light. We
then calculate the reflective ghost imaging with classi-
cally correlated phase-sensitive light.

In the current section, we calculate the expressions of
lensless reflective ghost imaging with classically corre-
lated phase-sensitive light in the near and far fields.

The phase-sensitive correlation function propagates in
a different manner from its phase-insensitive counterpart.
We find that the coherence radius diffraction and in-
tensity radius diffraction are decoupled in this case[21].
Two Fresnel numbers are required to distinguish the
near field from the far field: the Fresnel number for the
diffraction of the coherence radius, DN = k0x

2
0

/
2L, and

the Fresnel number for diffraction of the intensity radius,
DF = k0a

2
0

/
2L. The near-field regime for the phase-

sensitive correlation propagation occurs when both Fres-
nel numbers are far greater than one, and the far-field
regime is when both Fresnel numbers are much less than
one[12]. Both conditions are more stringent than the cor-
responding one for the phase-insensitive light.

Unlike in the phase-insensitive case, the signal and ref-
erence field have phase-sensitive cross-correlations, but
no phase-insensitive cross-correlation. With Gaussian-
Schell model and the near field, the phase-sensitive cross-
correlation is given by[20]

〈
Ê1(x1, t1)Ê2(x2, t2)

〉
= K

(p)
1,2 (x1, x2)R

(p)
1, 2(t2 − t1)

=
2P

πa2
0

eik0(|x2|
2+|x1|

2)/2L

· e−(|x1|
2+|x2|

2)/a
2

0
−|x2−x1|

2/2x2

0

· e−(t2−t1)2/2T2

0 , (21)

where the superscripts (p) labeled normally represent the
ordered phase-sensitive term.

Substituting Eq. (21) into Eq. (15), we obtain the
phase-sensitive reflective ghost imaging expression in the
near field:

〈
Ĉ(x1)

〉
= C0(x1) + Cp

( 2P

πa2
0

)2

·
∫

e−2(|x1|
2+|x2|

2)/a
2

0
−|x2−x1|

2/x
2

0 T (x2) dx2, (22)

where

Cp =
A1A2λ

2
0q

2η2

L2

[∣∣∣R(p)
1, 2(t)

∣∣∣
2

∗ hB(t) ∗ hB(−t)

]

t=0

.

(23)

For the Gaussian-Schell model source, forming the
near-field reflective ghost image with the classically cor-
related phase-sensitive light identical with the near-field
reflective ghost image formed with the phase-insensitive
light, with the exception of the near field condition for
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phase-sensitive coherence propagation, is far more strin-
gent than that for its phase-insensitive counterpart.

When the source-to-object separation is the far-field
regime for phase-sensitive coherence propagation, the
source-plane phase-sensitive cross-correlation that re-
sulted in the preceding near-field ghost image gives rise
to the following detection-plane phase-sensitive cross-
correlation[21]

K
(p)
1, 2(x1, x2)R

(p)
1, 2(t2 − t1) =

2P

πa2
L

· eik0(|x2|
2+|x1|

2)/2Le−(|x1|
2+|x2|

2)/a
2

L
−|x2+x1|

2/2x2

L

· e−(t2−t1)2/2T2

0 . (24)

Substituting Eq. (24) into Eq. (15), we obtain the ex-
pression of reflective ghost imaging with classically cor-
related phase-sensitive light in far field.

〈
Ĉ(x1)

〉
= C0(x1) + Cp

( 2P

πa2
L

)2

·
∫

e−2(|x1|
2+|x2|

2)/a2

L
−|x2+x1|

2/x2

LT (x2) dx2. (25)

The reflective ghost image with classically correlated
phase-sensitive light in the far field is an inverted version
of the corresponding reflective ghost image with phase-
insensitive light in the far field. They have identical
fields of view and spatial resolution.

Identical fields of view and spatial resolution are evi-
dent between the reflective ghost imaging and the trans-
mission ghost imaging with phase-sensitive light in near
and far field.

In conclusion, we use quantum description and
Gaussian-state to explore the reflective ghost image in
near and far field with phase-insensitive light and classi-
cally correlated phase-sensitive light. We find the reflec-
tive ghost image formation to be due to phase-insensitive
or phase-sensitive cross-correlations between the signal
and reference fields. Similar features of the reflective
ghost image with phase-insensitive light and classically
correlated phase-sensitive light include the fields of view
and spatial resolution. However, the phase-sensitive co-
herence propagation is much more stringent than the
phase-insensitive case. Thus, the reflective ghost imag-
ing with phase-insensitive light performs better than the
classically correlated phase-sensitive light in the experi-
ment.
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