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An all-optical serial-to-parallel converter (SPC) utilizing two cascaded phase modulators and optical band-
pass filters (OBPFs) is experimentally investigated and applied to demultiplex an 80-GBd optical time-
division multiplexing (OTDM) return-to-zero (RZ) differential quadrature phase-shift keying (QPSK) sig-
nal. Two 40-GBd OTDM tributaries are error-free demultiplexed with a power penalty of approximately
4 dB in the worst case. With its advantages of compact structure, high speed, low power penalty, simul-
taneous two-tributary operation, and no assistance from a light source, the SPC has potential for use in
future OTDM networks. However, the performance of the SPC still needs improvement.
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The optical time-division multiplexing (OTDM) tech-
nique is seen as a very attractive candidate for increas-
ing the bit-rate per wavelength channel further(!. An
all-optical serial-to-parallel converter (SPC) with multi-
tributary demultiplexing capability and low power con-
sumption is a key technique for OTDM networks. Most
reported OTDM demultiplexers are designed for OTDM
return-to-zero (RZ) on-off keying (OOK) signal and are
not phase-preserved. Other reported demultiplexers, in-
cluding those based on either electro-optical on-off gates
utilizing electro-absorption modulator (EAM)[?, phase
modulator (PM)[®l, Mach-Zehnder modulator (MZM)[*],
and nonlinear effects, such as cross-phase modulation
(XPM)P®! and four-wave mixing (FWM), are also inca-
pable of multi-channel processingl®. Thus, along with
the application of multi-level modulation formats, such
as differential quadrature phase-shift keying (DQPSK) in
OTDM systems!™"), the development and investigation of
schemes that are capable of demultiplexing, such OTDM
signals with phase-preserving and multi-tributary pro-
cessing capabilities, are necessary.

In this letter, an all-optical SPC that uses two cascaded
PMs and optical band-pass filters (OBPF's) is experimen-
tally investigated for optical quadrature phase-shift key-
ing (QPSK) signals. We demonstrate the application of
the SPC for the simultaneous demultiplexing of two 40-
GB base-rate OTDM tributaries from an 80-GB OTDM
RZ-DQPSK signal. Error-free performances were ob-
tained for both base-rate tributaries. The power penalty
was approximately 4 dB in the worst case. The SPC
features a compact structure, high speed, low power
penalty, and simultaneous two-tributary operation ca-
pacity, without assistance from a light source. With the
possible capability of cascading such SPCs to extract
more OTDM tributaries simultaneously, the proposed
scheme has potential for use in future OTDM networks.

Figure 1 shows the experimental setup of the SPC for
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the demultiplexing of an 80-GBd OTDM RZ-DQPSK
signal. An optical pulse train centered at 1549.65 nm
with a repetition rate of 40 GHz and a full-width at
half-maximum (FWHM) of 8 ps was generated using an
EAM driven by a 40-GHz sine signal. The pulse train
was then linearly compressed into a FWHM of 3.5 ps by
using a PM driven with a 40-GHz electrical sine signal
with amplitude of 1.4V, and a piece of 40-m disper-
sion compensated fiber (DCF, D=—134 ps/(nm-km) at
1550 nm). Then, the pulse train was launched into a
dual-parallel MZM (DPMZM) for QPSK modulation.
The electrical I and Q tributaries were obtained from
the positive and negative outputs of a 40-GHz pattern
generator with a pattern length of 27—1 and a relative
delay of 63 bits for decorrelation, respectively. After
amplification, the 40-GBd optical RZ QPSK signal was
time-division multiplexed through a delay-line based op-
tical multiplexer into an 80-GBd OTDM RZ-DQPSK
signal.

Prior to the application of the SPC, a 3-nm OBPF
was first applied as a pre-filter to suppress part of the
OTDM signal spectrum and potentially increase the opti-
cal signal-to-noise ratio (OSNR) of the two demultiplexed
OTDM tributaries. The performance of the blue-shift
and red-shift tributaries will be degraded if no suppres-
sion is applied because of spectrum overlapping. The
SPC, which consisted of a 3-nm OBPF as a pre-filter,
two PMs, and a dual-output optical filter (Finisar
waveshaper, 4000 s), was used for OTDM demultiplex-
ing. The two cascaded PMs (V; >10 V at 40 GHz),
which were driven by two 40-GHz, 30-dBm (approx-
imately 2V,) synchronized electrical sine waves, were
applied to induce the maximum positive and negative
chirps to the adjacent OTDM tributaries, respectively.
The waveshaper, which was centered at 1 550.86 nm
(port 1) and 1548.03 nm (port 2) with an optimized
bandwidth of 0.7 nm each, was used to simultaneously
extract the two frequency-shifted OTDM tributaries.
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Fig. 1. Experimental setup. Insets: eye-diagrams and optical
spectra of the short pulse train and OTDM signal.
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Fig. 2. (Color online) Measured optical spectra (resolution of
0.5 nm). Inset: filter shapes of the waveshaper.

Given that the chirps induced in all the symbols of the
same OTDM tributary are the same, the phase infor-
mation will be preserved during this stage. It should
be noted that the filter can be replaced with an ar-
rayed waveguide grating (AWG)[! for compactness and

cost-effectiveness when the induced chirp sufficiently
separates the two OTDM tributaries. If the number of
OTDM tributaries is greater than 2, a parallel cascade of
the SPCs can be used to demultiplex all the tributaries(®!.

The two demultiplexed OTDM tributaries were further
demodulated using an optical delay interferometer (DI)
and then sent for bit error-rate (BER) testing. It should
be noted that no pre-coding was applied on the trans-
mitter, and the BER tester was programmed to receive
the expected data.

The insets of Fig. 1 show the optical eye-diagrams and
spectra of the short pulse train and the 80-GB OTDM
RZ-DQPSK signal. The OTDM signal spectrum had a
3-dB bandwidth of 1.2 nm.

Figure 2 shows the evolution of the OTDM spectrum.
All the curves were measured and plotted with a resolu-
tion of 0.5 nm to clearly observe the separation between
the spectra of the red-shift and blue-shift tributaries.
After pre-filtering and cascading the two PMs, the spec-
trum was broadened into a 3-dB bandwidth of 2.63 nm.
The blue-shift and red-shift components were clearly
separated and extracted using a Gaussian-shaped dual-
output filter. The inset of Fig. 2 illustrates the filter
shapes of the dual-output filter (waveshaper).

Figure 3 illustrates the BER performance of the two de-
multiplexed 40-GBd base-rate OTDM tributaries. Error-
free performances were achieved for both tributaries. For
the 40-GBd RZ-QPSK signal under back-to-back (B2B)
configuration, the sensitivities (at BER=1x10"") for I
and Q tributaries were —29.29 and —28.98 dBm, respec-
tively. On the other hand, for the demultiplexed OTDM
tributaries with SPC for demultiplexing, the sensitivities
(at BER=1x107?) were —25.62 dBm (red-shift, I tribu-
tary), —25.75 dBm (red-shift, Q tributary), —26.28 dBm
(blue-shift, T tributary), and —24.91 dBm (blue-shift,
Q tributary). The power penalty was approximately
4 dB in the worst case (blue-shift, Q tributary). The
insets of Fig. 3 show the demultiplexed and demodulated
optical eye-diagrams of the two OTDM tributaries, as
well as the corresponding electrical eye-diagrams. The
amplitude jitter of the optical eye-diagrams, which are
the main causes of power penalty, originated from the
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Fig. 3. (Color online) Measured BER results for the two de-
multiplexed OTDM tributaries. Insets: Demultiplexed and
demodulated optical eye-diagrams and corresponding electri-
cal eye-diagrams.
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crosstalk between the two demultiplexed OTDM tribu-
taries caused by a certain amount of spectrum overlap,
which may be improved through strict pre-filtering or by
inducing larger chirps. However, the SPC performance
still requires further improvements.

In conclusion, we demonstrate and investigate an op-
tical SPC for QPSK signal based on two cascaded PMs
and OBPFs through an 80-40 GBd OTDM demultiplex-
ing experiment. Error-free performances are achieved
for both simultaneously demultiplexed OTDM tribu-
taries. The power penalty is approximately 4 dB in the
worst case. The proposed SPC features a compact struc-
ture, high speed, simultaneous two-channel operation,
and cascadability, without any assistance from a light
source. Such advantages indicate that the potential of
the proposed scheme for use in future OTDM networks.
However, the SPC performance still requires further im-
provements.
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