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Precision position measurement of single atom
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Atom localization in a five-level atomic system under the effect of three driving fields and one standing
wave field is suggested. A spontaneously emitted photon from the proposed system is measured in a
detector. Precision position measurement of an atom is controlled via phase and vacuum field detuning
without considering the parity violation.
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In recent years, several schemes have been proposed for
the localization of an atom, such as the use of a stand-
ing optical light field[1,2]. In these schemes, the idea
of the virtual optical slit was suggested for measuring
the phase-shift of the optical field in a cavity. Earlier,
several experiments were conducted on the basis of res-
onance imaging for the precise position of the moving
atoms[3]. The magnetic field gradient[4] used in these
experiments was able to determine a spatial resolution
of 1.7 µm. This spatial resolution was then enhanced to
200 nm by using a light shift gradient[5,6] instead of the
magnetic field gradient.

The study of atom localization has potential applica-
tions, such as in laser cooling and trapping of neutral
atoms[7], atom nanolithography[8], etc. Researchers have
investigated a lot of localization schemes, that depend
on atomic coherence and quantum interference effect.
These schemes include, for example, resonance fluores-
cence from a two-level system[9] and the measurement
of the spontaneous emission[10,11]. A study of the case
of a three-level atomic system[10] revealed that a spon-
taneously emitted photon carries information regarding
the atom; thus four equally probable positions of a single
atom could be observed by decreasing the vacuum field
detuning δk.

In the last decade, a scheme consisting of a four-level
atomic system interacting with the traveling and stand-
ing wave fields that was capable of observing four equally
probable positions for a single atom was suggested[12].
Furthemore, the four equally probable positions were
reduced by a factor of 2 for a single frequency measure-
ment whenever the phase of the classical standing wave
field was controlled. The authors observed that control
of the amplitudes of the driving field provided a strong
narrowing line that yielded a better resolution in posi-
tion measurement of the single atom. In the scheme[12],
a parity violation was considered, and a high field was
required to break this violation.

In 2009, two different systems were used for the atom
localizations[13,14] to observe single position measure-
ment. In the system[13], a four-level Raman gain process
was used for subwavlength atom localization and a single
peak was observed for an atom. The other system[14]

was basically dependent upon two-photon measurement
of the position of a quantum particle in Λ- and M-type

systems, and the same behavior was observed for single
atom localization.

More recently, a scheme[15] was proposed for atom lo-
calization for a single position measurement of an atom
interacting with two classical standing wave fields. In
the scheme[15], a quantum coherence was generated in a
three-level atomic system by a classical standing wave
field coupled to the upper excited two levels. In this
system, the fluorescence spectrum was controlled via the
phase of the driving field. The control of the fluorescence
spectrum led to reduced localization peaks in the con-
ditional position probability distibution. Initially, eight
peaks per unit wavelength of the standing wave were
observed in the conditional position probability distri-
bution. The number of peaks was reduced to one via a
single controllable parameter i.e., phase ϕ of the standing
wave.

In this letter, we demonstrate the subwavelenght local-
ization of an atom in a five-level atomic system interact-
ing with traveling and standing wave fields, as shown in
Fig. 1. We control the position and width of the local-
ization peaks by phase and vacuum field detuning. We
observe two, as well as one, localization peaks for a sin-
gle frequency measurement. In our proposed system, no
parity violation exits, which is why experimentally our
system is more viable than that proposed in Ref. [12].

We propose a five-level atomic configuration, as shown
in Fig. 2. A five-level atom with energy-levels of |a〉, |b〉,

Fig. 1. Schematic of an atom interacting with four fields.
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Fig. 2. Energy-level configuration.

|c〉, |d〉, and |e〉 passes through four classical driving fields
as shown in Fig. 1. The atom decays from level |a〉 to level
|e〉 with decay rate γ due to the fact that the atom inter-
acts with the reservoir modes. The decaying energy-levels
|a〉 couples with |b〉 and |b〉 with |c〉 through classical
traveling wave fields having Rabi frequencies Ω1 and Ω2

respectively. At that instant, level |a〉 also couples with
level |d〉 through a classical standing wave field having
frequency ν and relative phase ϕ, the relative phase may
be defined as ϕ = ϕ3 + ϕ4 −ϕ1 −ϕ2. The corresponding
Rabi frequency between levels |a〉 and |d〉 is Ω4. Also the
energy-level |d〉 couples with |c〉 with corresponding Rabi
frequency Ω3. As the atom moves in the z-direction,
during its motion, it interacts with the classical stand-
ing wave field. During the interaction of the atom with
standing wave field, the corresponding Rabi frequency
Ω4(x) is position dependent i.e., Ω4(x)=Ω4sin(kx), where
k is the wave vector of the standing wave field.

The interaction Hamiltonian for the resonant atomic
system is written as

V = ~

[

Ω1e
ikxcos θ1 |a〉〈b| + Ω2e

ikxcos θ2 |b〉〈c|

+ Ω3e
ikxcos θ3 |d〉〈c| + Ω4(x)eiϕ|a〉〈d|

+
∑

k

gk(x)eiδkt|a〉〈e|bk + H.c
]

, (1)

where gk(x) is the coupling constant linked to the spon-
taneously emitted photon, and bk is the annihilation op-
erator. Here, we define the vacuum field detuning as

δk = ωae − νk, (2)

where ωae is the transition frequency between levels |a〉
and |e〉 whereas νk is frequency of the spontaneously
emitted photon in the reservoir mode k.

Now, we may write the complete atom-field state vec-
tor as

|Ψ(x; t)〉 =

∫

dx
{

f(x)|x〉[Aa,0(x; t)|a, 0〉

+ Ab,0(x; t)|b, 0〉] + Ac,0(x; t)|c, 0〉

+ Ad,0(x; t)|d, 0〉 +
∑

k

Ae,1k
(x; t)|e, 1k〉]

}

,

where Aj,0(x; t) represents the probability amplitudes for
levels |a〉, |b〉, |c〉, and |d〉 having no photon present in the
reservoir mode k; Ae,1k

(x; t) is the probability amplitude
for level |e〉 having one photon emitted spontaneously in

the reservoir mode k when the atom is in level |e〉; f(x)
is the centre of the mass wave function of the atom.

Because our system is associated with the position de-
pendent atom-field interaction, the spontaneously emit-
ted photon carries the information about the centre-of-
mass motion of the atom. Therefore, the position mea-
surement of the atom is conditioned by finding the spon-
taneously emitted photon. Thus, the conditional posi-
tion probability distribution W (x; t/e; 1k)[10−12] may be
defined as the probability of finding the atom at position
x in the standing wave field given that a spontaneously
emitted photon is detected at time t in the reservoir mode
of wave vector k. This W (x; t/e; 1k) can be obtained
by taking the appropriate projection over the atom field
state vector, which can be written as

W (x; t/e; 1k) = F (x; t/e; 1k)|f(x)|2, (3)

where F (x; t/e; 1k) is the filter function and may be
defined as

F (x; t/e; 1k) = |N |2|Ae,1k
(x; t)|2, (4)

where N is the normalization factor.
Equations (3) and (4) show that W (x; t/e; 1k) de-

pends on the probability amplitude Ae,1k
(x; t); thus, we

should require this probability amplitude. To find the
required probability amplitude Ae,1k

(x; t), we solve the
Schrodinger wave equation by using Eq. (1). We calcu-
late the following equation of motion using the probabil-
ity amplitude method as

Ȧa,0 = − i
[

Ω1e
ikxcos θ1Ab,0 + Ω4e

iϕsin (kx)Ad,0

+ gk(x)
∑

k

eiδktAe,1k

]

, (5)

Ȧb,0 = − i[Ω1e
−ikxcos θ1Aa,0 + Ω2e

ikxcos θ2Ac,0], (6)

Ȧc,0 = − i[Ω2e
−ikxcos θ2Ab,0 + Ω3e

−ikxcos θ3Ad,0], (7)

Ȧd,0 = − i[Ω3e
ikxcos θ3Ac,0 + Ω4e

−iϕsin(kx)Aa,0], (8)

Ȧe,1k
= − i[g∗

k
(x)e−iδktAa,0]. (9)

Following the Laplace transform method and
Weisskopf-wigner approximation, we calculate Ae,1k

(x; t)
from Eqs. (5)–(9), considering that the atom is prepared
initially in the level |c〉, such that only the probability
amplitude is Ac,1k

(0)=1. We follow the same method in
Ref. [12] to calculate Ae,1k

(x; t) for a very large time,
which means that the interaction time is significantly
larger than the atomic decay rate γ as

Ae,1k
(t −→ ∞) = −ig∗

k
(x)(C/D), (10)

where

C = − iδk[Ω1Ω2e
ikx(cos θ1+cos θ2) + Ω3Ω4e

ikxcos θ3sin kx],

D = δ4
k − δ2

k(Ω2
2 + Ω

2
3 ) − iγδ3

k/2 + iγδk(Ω2
2 + Ω

2
3 )/2

+ Ω
2
1 (Ω2

3 − δ2
k
) − Ω1Ω2Ω3Ω4sin kx

·[eikx(cos θ1+cos θ2−cos θ3)−iϕ+e−ikx(cos θ1+cos θ2−cos θ3)+iϕ]

+ Ω
2
4 sin2kx(Ω2

2 − δ2
k
),

and θ1 = π/4, θ2 = π/2 + θ1, and θ3 = π/2. Now, the
probability of finding the atom in the level |e〉 along with
the spontaneous emission is given by

|Ae,1k
(t −→ ∞)|2 = |Gk|

2|C/D|2. (11)
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We place Eq. (11) into Eq. (4), and find the filter function proportional to W (x) to be

F (x; t/e; 1k) = |N |2|Gk|
2 δ2

k
Ω

2
3Ω

2
4 (sin kx + S1)(sin kx + S2)

γ2/4δ2
k
(Ω2

2 + Ω2
3 − δ2

k
)2 + Ω4

4 (Ω2
2 − δ2

k
)2(sin kx − X1)2(sin kx − X2)2

, (12)

with S1 = Ω1Ω2

Ω3Ω4

e−iϕ, S2 = Ω1Ω2

Ω3Ω4

eiϕ, and

X1 =
Ω1Ω2Ω3 cosϕ +

√

Ω2
1Ω2

2Ω2
3 cos2ϕ − (Ω2

2 − δ2
k
)(δ2

k
− Ω2

1 − Ω2
2 − Ω2

3 + Ω2
1Ω2

3 )

Ω4(Ω2
2 − δ2

k
)

, (13)

X2 =
Ω1Ω2Ω3 cosϕ −

√

Ω2
1Ω2

2Ω2
3 cos2ϕ − (Ω2

2 − δ2
k
)(δ2

k
− Ω2

1 − Ω2
2 − Ω2

3 + Ω2
1Ω2

3 )

Ω4(Ω2
2 − δ2

k
)

. (14)

We begin our discussion by considering a five-level
atomic system interacting with four classical fields. The
three classical fields are considered as traveling waves and
are mutually perpendicular to one another, as labelled by
(1), (2) and (3) in Fig. 1. The fourth field is the classi-
cal standing wave field aligned in the x-axis, as shown in
Fig. 1. Here we consider the initial position distribution
of the atom, for example |f(x)|2, is constant in many
wavelengths of the standing wave field. Equation (12)
shows that the filter function F (x; t/e; 1k) depends upon
the spontaneously emitted photon νk, which is propor-
tional to δk, as shown in Eq. (2). The filter function also
depends upon the amplitudes and phase of the driving
fields. From the analysis of the filter function, clearly the
peak maxima occurs when sinkx = X1 or sinkx = X2.
This phenomenon means that, when Ω1=Ω2=Ω3=Ω and
ϕ = π/2, we obtain peak maxima in the filter function
when δk satisfies the following condition

δk = ±

√

Ω2Ω2
4 sin2kx − 3Ω2 + Ω4

Ω2
4 sin2kx − 1

. (15)

Now, the frequency of the spontaneously emitted photon
νk from level |a〉 to level |e〉 is

νk = ωae ∓

√

Ω2Ω2
4 sin2kx − 3Ω2 + Ω4

Ω2
4 sin2kx − 1

. (16)

Clearly, if we measure the spontaneously emitted photon,
we find the conditional position probability distribution
W (x) of the atom inside the standing wave field. Then,
the peaks are located at the following normalized position
in the conditional probability distribution as

kx = ±sin−1

√

δ2
k
− 3Ω2 + Ω4

Ω2
4

+ nπ, (17)

where n is an integer having the values 0, 1, 2, · · · .
We plot the conditional position probability distribu-

tion W (x) versus the normalized position kx for different
phase values of the standing wave field ϕ, see Fig. 3. We
observe that how the phase of the standing wave field
affects the precise position measurement of the sponta-
neous emission. when we set the phase of the standing
wave fields at π and 0, the localization peaks reduce in
the conditional position probability distribution W (x),
as shown in Fig. 3. For phase ϕ = π of the standing
wave field, we observe a single localization peak in the
conditional position probability distribution W (x) at left
side, as shown in Fig. 3(a). It is due to the fact that

Fig. 3. W (x) verses normalized position kx (Ω1=Ω2=Ω3=1γ,
δk=0.9γ, and Ω4=10.5γ) with (a) ϕ=π and (b) ϕ=0.

Fig. 4. W (x) verses normalized position kx (Ω1=Ω2=Ω3=1γ,
δk=0.8γ, and Ω4=10.5γ) with (a) ϕ=π and (b) ϕ=0.

a quenching occurs in the spontaneous emission in the
normalized position kx ranging for 0 −→ π. Similarily to
the control of the localization peak, we observe when we
set the phase of the standing wave field ϕ = 0, a single
localization peak in the conditional position probability
distribution W (x) at right side and a quenching occurs
in the left side, see Fig. 3(b).

In Fig. 3, we see that the quenching in the spontaneous
emission contributes to enhancing the precision position
measurement of a single atom by controlling the phase of
the standing wave field. We obtain a single peak in the
conditional position probability distribution W (x). A
similar single peak was observed in three-level system by
Ghafoor et al.[15], however, the position of an atom was
imprecise. Furthermore, to enhance the precision in the
position of an atom, we decrease δk from 0.9γ to 0.8γ.
The observed single peak splits into two peaks and we
obtain two precise positions of a single atom at phases π
and 0, see Fig. 4. We note that the position of the max-
ima in the conditional position probability distribution
strongly depends on the value of the detuning δk.

In conclusion, we suggest a scheme for atom localiza-
tion. Our scheme is based on the spontaneously emitted
photon that carries the information of an atom. The
spontaneously emitted photon localizes the atom in real
time by measuring the frequency. We control the local-
ization peaks by phase of the standing wave field and
vacuum field detuning thereby achieving precise position
of an atom without parity violation.
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