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OCIS codes: 190.3100, 140.1540, 140.5960.
doi: 10.3788/COL201210.101901.

Since the first experimental demonstration was reported
in 1998[1−3], optical chaotic communication systems had
attracted increasing interest. In recent years, chaos syn-
chronization and secure communication of laser systems
have also attracted considerable attention[4−11] due to
their unique advantages, such as higher security, broader
signal bandwidth, and greatly enhanced signal transmis-
sion capability.

Extensive research efforts have been concentrated on
how to generate and control chaotic signal from laser
systems[12−15]. For semiconductor lasers (SLs), vari-
ous routes to chaos under different perturbation, such
as current modulation[12], optical feedback[13], optical
injection[14], and optoelectronic feedback[15], have been
observed and investigated. In addition, chaos synchro-
nization of SLs has become more important due to
its applications to communication. Thus far, various
synchronization and communication schemes for laser
chaotic systems with different coupled modes have been
studied by many researchers. Kouomou et al. in-
vestigated cluster synchronization of coupled current-
modulated SLs[6]. Deng et al. investigated a bidirec-
tional chaos-synchronization scheme of SLs with opto-
electronic feedback[7]. Xia et al. investigated cascaded
chaotic synchronization and communication based on op-
toelectronic negative feedback SLs[8]. Saha et al. studied
the synchronization of two coupled single-mode Nd:YAG
lasers[9]. Banerjee et al. explored the synchronization
phenomena in spatiotemporal SL systems and proposed
a colored-image-encryption scheme[10]. These methods
all adopt the continuous chaotic synchronization scheme.
To increase the efficiency of bandwidth usage, impulsive
chaotic synchronization[16] has been proposed. In the
synchronization process, the control signals are transmit-
ted from the driving system to the driven system only at
discrete time instants, thereby reducing the amount of in-
formation transmitted between the two systems. Various
theoretical and experimental results of impulsive chaotic
synchronization can be found in Refs. [16-18]. To the
best of our knowledge, very few results on impulsive syn-
chronization of SL chaotic systems have been published.
For SL chaotic systems, the carrier density is not easy to

observe or measure in the real world, which means not
all states of the system equation are available. Therefore,
the mentioned impulsive synchronization method cannot
be used to synchronize SL chaotic systems.

In our work, the general case of SL chaotic system is
considered, and an impulsive control scheme is investi-
gated. The proposed synchronization method can be
used to share an identical chaotic waveform as the carrier
in both the transmitter and the receiver for analog sig-
nal concealment. It can also be used as a pseudo-random
sequence generator for digital signal encoding and decod-
ing by sampling and quantizing the synchronized chaotic
signal in both sides.

Consider a drive-response synchronization scheme with
the dynamics of the SL drive system described by the fol-
lowing rate equations governing the photon density (P )
and carrier density (N):

ẋ = Ax + f(x(t)), (1)

where x = [N1, P1]
T, A ∈ R2×2, and f : R2 → R2 are

nonlinear continuous functions with respect to its argu-
ments. The response system is characterized by



















ẏ = Ay + f(y(t)), t 6= ti,

∆P2 = P2(t
+
i ) − P2(t

−

i ) = P2(t
+
i ) − P2(ti)

= µ(P2 − P1), t = ti

P2(t
+
0 ) = P2(t0),

(2)

where y = [N2, P2]
T, P2 is left continuous at t = ti, µ is

a constant, and f is the same function as defined before.
The impulse instant sequence {ti} satisfies 0< t1 < t2 <
· · · < ti < · · · , ti → ∞ as i → ∞. Note that the carrier
density is not easy to observe or measure, and that only
photon density is used to design the impulsive controller.

The nonlinear function f is assumed to be a Lipschitz
function with respect to its argument

‖ f(y(t)) − f(x(t)) ‖6 k ‖ y(t) − x(t) ‖ . (3)

Thus, we have

f(y(t)) − f(x(t)) = K(x(t), y(t))(y(t) − x(t)), (4)
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where K ∈ R2×2 is a bounded matrix (||K|| 6 k) with
its elements depending on x(t) and y(t).

Defining the synchronization error as e(t) = [eN ,
eP ]T = y(t) − x(t), we can obtain the following error
system:

{

ė = Ae + f(y(t)) − f(x(t)), t 6= ti

∆e = [0 µeP ]T, t = ti
. (5)

From Eqs. (3)–(5), we can obtain

{

ė = (A + K(x, y))e, t 6= ti

∆e = [0 µeP ]T, t = ti
. (6)

In this letter, our goal is to find several conditions on the
control gains µ, the impulse intervals τi+1 = ti+1−ti < ∞
(i = 1, 2, · · · ) such that the response system is synchro-
nized.

In what follows, we shall develop some stabilizable
sufficient conditions for the error system of the SL
chaotic systems.

Lemma 1[19]: If the following impulsive differential
inequality is satisfied as

{

ż(t) 6 pz(t) + q(t), t 6= ti, t > t0

z(t+i ) 6 diz(ti), t = ti, i = 1, 2, · · ·
,

where z(t) belong to the set PC(l), PC(l)={ϕ : [0,∞) →
Rl, ϕ(t) is continuous everywhere except for the finite
number of points ti at which ϕ(ti) = ϕ(t−i ) and ϕ(t+i )
exist}. Here p, di ∈ R and q ∈ C(R+, R). Then

z(t) 6z(t0)
∏

t0<ti<t

die
p(t−t0)

+

∫ t

t0

∏

t0<ti<t

die
p(t−t0)q(s)ds, t > t0.

Lemma 2[19]: If the following integral inequality is
satisfied as

z(t) 6 h(t) +

∫ t

t0

p(s)z(s)ds, t > t0,

where h, z ∈PC(R+, R) and di ∈ R, p ∈C(R+, R+), then,

z(t) 6 h(t) +

∫ t

t0

exp

∫ t

s

p(σ)dσp(s)h(s)ds, t > t0.

Theorem 1: If positive scalars λ1, λ2, δ1, and δ2 ex-
ists, such that the following inequalities hold:

[

A11 + K11 + λ1 0.5(A12 + K12)
∗ −δ1

]

< 0, (7)

[

−λ2 0.5(A21 + K21)
∗ A22 + K22 − δ2

]

< 0, (8)

4λ2δ1

ω
(

ln(1/ω)
β − 2δ2 − 2λ1

) − 2λ1 < 0, (9)

where ω = (1 + µ)2 and τi 6 β, then the origin of the
error system will be stable. Thus, SL chaotic system and

SL chaotic system are synchronized.
Proof : Choose a candidate Lyapunov function V (t) =

V (e(t))=0.5eTe.
Set V1 = 0.5e2

N and V2 = 0.5e2
P .

The time derivative of V1 is

V̇1 = ėNeN = (A11eN + A12eP + φ1)eN

= (A11eN + A12eP + K11eN + K12eP )eN

= (A11 + K11)e
2
N + (A12 + K12)eNeP

= [ eN eP ]

[

A11 + K11 + λ1 0.5(A12 + K12)
∗ −δ1

]

·

[

eN

eP

]

− 2λ1V1 + 2δ1V2.

From Eq. (7), we have

V̇1 6 −2λ1V1 + 2δ1V2. (10)

For t ∈ (ti, ti+1], i = 1, 2, · · ·, taking the derivative of
V2(t) with respect to t along the trajectory of Eq. (6)
yields

V̇2 = ėP eP = (A21eN + A22eP + φ2)eP

= (A21eN + A22eP + K21eN + K22eP )eP

= (A22 + K22)e
2
P + (A21 + K21)eNeP

= [ eN eP ]

[

−λ2 0.5(A21 + K21)
∗ A22 + K22 − δ2

]

·

[

eN

eP

]

+ 2λ2V1 + 2δ2V2.

From Eq. (8), we have

V̇2 6 2λ2V1 + 2δ2V2. (11)

From Eq. (6), we have

V2(t
+
i ) = 0.5e2

P (t+i ) = 0.5(1 + µ)2e2
P (t−i )

= (1 + µ)2V2(t
−

i ) = ωV2(ti).

From Eq. (10), we can obtain

V1 6 e−2λ1tV1(0) + 2δ1

t
∫

0

e−2λ1(t−s)V2(s)ds. (12)

Substituting Eq. (12) into Eq. (11) yields























V̇2 6 2δ2V2 + 2λ2(e
−2λ1tV1(0) + 2δ1

t
∫

0

e−2λ1(t−s)

·V2(s)ds), t 6= ti

V2(tk) = ωV2(t
−

k ), t = ti
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According to Lemma 1, and setting γ = 1
β ln(1/ω)− 2δ2,

we can obtain

V2 6 V2(0)
∏

0<tk<t

ωe2δ2t +

t
∫

0

∏

s<tk<t

ωe2δ2(t−s)2λ2

· (e−2λ1sV1(0) + 2δ1

s
∫

0

e−2λ1(s−σ)V2(σ)dσ)ds

6 V2(0)
1

ω
e−γt +

t
∫

0

1

ω
e−γ(t−s)2λ2

[

e−2λ1sV1(0)

+ 2δ1

s
∫

0

e−2λ1(s−σ)V2(σ)dσ
]

ds

=
V2(0)

ω
e−γt +

2λ2V1(0)

ω(γ − 2λ1)
(e−2λ1t − e−γt)

+
4λ2δ1

ω

t
∫

0

t
∫

σ

e−γ(t−s)e−2λ1(s−σ)V2(σ)dsdσ

=
V2(0)

ω
e−γt +

2λ2V1(0)

ω(γ − 2λ1)
(e−2λ1t − e−γt)

+
4λ2δ1

ω(γ − 2λ1)

t
∫

0

(e−2λ1(t−σ) − e−γ(t−σ))V2(σ)dσ.

According to Eq. (9), γ − 2λ1 >0; thus, we have

V2 6
V2(0)

ω
e−γt +

2λ2V1(0)

ω(γ − 2λ1)
e−2λ1t +

4λ2δ1

ω(γ − 2λ1)

·

t
∫

0

e−2λ1(t−σ)V2(σ)dσ.

Set V3 = V2e
2λ1t, then

V3 6
V2(0)

ω
e(2λ1−γ)t +

2λ2V1(0)

ω(γ − 2λ1)
+

4λ2δ1

ω(γ − 2λ1)

·

t
∫

0

V3(σ)dσ.

According to Lemma 2, we can obtain

V3 6
V2(0)

ω
e(2λ1−γ)t +

2λ2V1(0)

ω(γ − 2λ1)
+

t
∫

0

e
4λ2δ1

ω(γ−2λ1)
(t−s)

·

(

V2(0)

ω
e(2λ1−γ)s +

2λ2V1(0)

ω(γ − 2λ1)

)

ds

=
V2(0)

ω
e(2λ1−γ)t +

2λ2V1(0)

ω(γ − 2λ1)
+

V2(0)(γ − 2λ1)

ω(γ − 2λ1)2 + 4λ2δ1

· e
4λ2δ1

ω(γ−2λ1)
t
(1 − e

(2λ1−γ−
4λ2δ1

ω(γ−2λ1)
)t

)

+
2λ2V1(0)

4λ2δ1
e

4λ2δ1
ω(γ−2λ1)

t
(1 − e

−4λ2δ1
ω(γ−2λ1)

t
)

6
V2(0)

ω
e(2λ1−γ)t +

2λ2V1(0)

ω(γ − 2λ1)
+

V2(0)(γ − 2λ1)

ω(γ − 2λ1)2 + 4λ2δ1

· e
4λ2δ1

ω(γ−2λ1)
t
+

2λ2V1(0)

4λ2δ1
e

4λ2δ1
ω(γ−2λ1)

t
.

Then, we can obtain

V2 6
V2(0)

ω
e−γt +

2λ2V1(0)

ω(γ − 2λ1)
e−2λ1t

+

(

V2(0)(γ − 2λ1)

ω(γ − 2λ1)2 + 4λ2δ1
+

2λ2V1(0)

4λ2δ1

)

e

[

4λ2δ1
ω(γ−2λ1)

−2λ1

]

t

6
V2(0)

ω
e−γt + αe

(
4λ2δ1

ω(γ−2λ1)
−2λ1)t

, (13)

where α = 2λ2V1(0)
ω(γ−2λ1)

+ V2(0)(γ−2λ1)
ω(γ−2λ1)2+4λ2δ1

+ 2λ2V1(0)
4λ2δ1

.

Substituting Eq. (13) into Eq. (12) yields

V1 6V1(0)e−2λ1t + 2δ1

t
∫

0

e−2λ1(t−s)V2(s)ds

6 V1(0)e−2λ1t +
2δ1V2(0)

ω(γ − 2λ1)
e−2λ1t

+
αδ1ω(γ − 2λ1)

2λ2δ1
e
(

4λ2δ1
ω(γ−2λ1)

−2λ1)t.

From Eq. (9), we have

4λ2δ1

ω(γ − 2λ1)
− 2λ1 < 0.

Therefore, we can conclude that V (t) decrease as t goes
to infinity, which means that the synchronization error
|e| decreases. Clearly, the order of the synchronization
errors is 1. This completes the proof.

To verify the effectiveness of proposed method, we con-
duct simulation studies on two directly modulated SL
chaotic systems. This method can also be used to syn-
chronize other types of SL chaotic systems. The corre-
sponding rate equations can be represented as















dN1

dt
=

1

τe

(

I

Ih
− N1 −

N1 − δ

1 − δ
P1

)

dP1

dt
=

1

τp

(

N1 − δ

1 − δ
(1 − εP1)P1 − P1 + ηN1

) , (14)



















































dN2

dt
=

1

τe

(

I

Ih
− N2 −

N2 − δ

1 − δ
P2

)

dP2

dt
=

1

τp

(

N2 − δ

1 − δ
(1 − εP2)P2 − P2 + ηN2

)

+ µ(P2(t
−

i ) − P1(t
−

i ))

t
∑

i=0

δ(t − ti)

I = Ib + Im sin(2πfmt)

, (15)

where τe and τp are the electron and photon lifetimes;
I is the driving current; δ = n0/nth and ε = εNLS0 are
dimensionless parameters, where n0 is the carrier den-
sity required for transparency, nth = (τeIh/eV) is the
threshold carrier density, εNL is the factor governing the
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nonlinear gain reduction occurring with an increase in
S, and S0 = Γ(τp/τe)nth; Ih is the threshold current; e
is the electron charge; V is the active volume; Γ is the
confinement factor. Here, Ib is the bias current, Im is the
amplitude of the modulation current, fm is the modula-
tion frequency, and η is the spontaneous emission factor.

Initially, the two lasers are set to operate at different re-
gions of the phase space.

Equations (14) and (15) can be rewritten in the form
of Eqs. (1) and (2), and the error system of SL in Eqs.
(14) and (15) can be written in the form of Eq. (6); thus,
we can obtain

A =







−
1

τe

1
τe

δ

1 − δ
η

τp
− 1

τp

(

1

1 − δ

)






,

K =







−
1

τe(1 − δ)
P1 −

1

τe(1 − δ)
N2

1

τp(1 − δ)
(P2 + εP 2

2 )
1

τp(1 − δ)
(N1 + εN1P1 + εN1P2 + εδP1 + εδP2)






.

The numerical integrations were accomplished using the
Runge-Kutta fourth-order method. The values of the
parameters used for numerical calculations were cho-
sen as τp = 6×10−12 s, τe = 3×10−9 s, Ih =
1.7×10−2 A, δ=0.692, Im=0.3Ih, Ib=1.5Ih, fm=8×108

Hz, η=5×10−5, and ε=10−4. From the simula-
tion results, we can obtain −6.4 × 109 < K11 <0,
−1.17×109 < K12 < −1.02×109, 0< K21 <3.25×1012,
and 0.51×1012 < K22 <0.59×1012. Therefore, according
to Eqs. (7) and (8), the positive scalars λ1=0.2×109,
λ2=0.1×1012, δ1=0.34×109, and δ2=2.67×1013 exist.
We consider µ = −0.9. Thus, according to Eq. (9),
the impulsive intervals are chosen as τi 6 β 60.5×10−13.
The simulation results are shown in Figs. 1 and 2, with
the synchronization errors plotted in the log scale.

In conclusion, we investigate the impulsive synchro-
nization problem for SL chaotic systems. The conditions

Fig. 1. Synchronization error of photon density.

Fig. 2. Synchronization error of carrier density.

for impulsive synchronization of SL chaotic systems are
derived. A numerical example is given to illustrate the
effectiveness of the proposed control scheme.
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