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Exo-atmospheric target discrimination using probabilistic
neural network
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Exo-atmospheric targets are especially difficult to distinguish using currently available techniques, because
all target parts follow the same spatial trajectory. The feasibility of distinguishing multiple type compo-
nents of exo-atmospheric targets is demonstrated by applying the probabilistic neural network. Differences
in thermal behavior and time-varying signals of space-objects are analyzed during the selection of features
used as inputs of the neural network. A novel multi-colorimetric technology is introduced to measure
precisely the temporal evolutional characteristics of temperature and emissivity-area products. To test the
effectiveness of the recognition algorithm, the results obtained from a set of synthetic multispectral data
set are presented and discussed. These results indicate that the discrimination algorithm can obtain a
remarkable success rate.

OCIS codes: 010.0280, 100.4996, 300.6340.
doi: 10.3788/COL201109.070101.

In response to a threat missile, an interceptor missile with
a kinetic warhead has been launched with the intention of
intercepting and killing the lethal reentry vehicle (RV) in
the exo-atmosphere before it reaches its target. Thus, in
theater ballistic missile defense (TBMD), it is critical for
the interceptor to discriminate the RV from the booster
parts and other decoys at distances of hundreds of kilome-
ters. Exo-atmospheric targets are especially difficult to
distinguish using currently available techniques because
all target parts follow the same trajectory during the exo-
atmospheric portion of the flight[1,2]. The infrared (IR)
sensor views the threat for about 10 s and starts at about
30 s before intercept. There is a need to use data from
the first 5 s of the 10-s window to discriminate the RV.
The threat complex is about 100 km away from the IR
sensor 30 s before intercept. Within this range, even
relatively large pieces are represented as dots on the IR
image. In addition, discrimination techniques that use
the difference in size as a feature do not work either.

Artificial neural networks (ANNs) currently comprise a
hot research area in many real world applications, includ-
ing image processing[3,4], classification[5], prediction[6],
and so on. In recent years, methods using time-delay
neural network (TDNN)[7] and its variants, such as adap-
tive time-delay neural network (ATNN)[8], finite-time im-
pulse response (FIR) TDNN[9], and time-delay recurrent
neural network (TDRNN)[10], among others, have also
achieved ideal results in exo-atmospheric target discrim-
ination.

Multispectral sensor data show great potential for
use in automatic target recognition (ATR) because
they provide both temporal and spectral features about
the targets; thus, they can be of tremendous aid in
discrimination[11,12]. In this letter, we propose an al-
gorithm for target discrimination based on multispectral
sensor data, using not only the temporal features but
also the spectral characteristics. We use a neural net-
work, which is a variant of the probabilistic neural net-
work (PNN) which is particularly appropriate for pattern
classification[13].

We first analyze the thermal behavior of objects in
space and their equilibrium temperatures. The equilib-
rium temperature can be obtained by solving the heat
transfer equation, which is given by

mc
dT

dt
+ QE = QA + QI, (1)

where the mass and heat capacity of the object are de-
noted by m and c, respectively; QE and QA are the power
emitted and absorbed by the object, respectively.

For an object illuminated by the sun, it is well known
that

QE = ASε(λ, T )σT 4 (2)

and

QA = α(S + SR)AC + ε(λ, T )EAC, (3)

where AS and AC are the surface and average cross-
sectional areas of the object, respectively; ε(λ, T ) is the
emissivity averaged over the infrared band; σ is the
Stefan-Boltzmann constant (5.67 × 10−8 W/(m2 · K4));
S is the solar flux (1360 W/m2); SR is the solar flux
reflected from the Earth (known as the albedo flux and
typically taken to be equal to 0.3S); E is the Earth’s IR
flux (about 240 W/m2); α is the absorptivity averaged
over the visible and near infrared (NIR) band. By com-
bining Eqs. (1)−(3), we can finally obtain an equation
for the equilibrium temperature, Teq, as

Teq =
{

AC

AS

[
α

ε(λ, T )
(S + SR)

σ
+

E

σ

]}1/4

. (4)

Thus, depending on the surface coating used, objects in
space during the daytime can have widely varying equi-
librium temperatures. In fact, one can obtain any equi-
librium temperature for a sphere ranging from 227 to 540
K using more than one surface coating.

For an object in space in the shadow of the Earth, the
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situation is considerably different. Since both the solar
flux, S, and the albedo, SR, of the Earth are zero, in this
case the equilibrium temperature can be reduced to

Teq =
(

AC

AS

E

σ

)1/4

. (5)

In practice, an object on a ballistic trajectory in space
may or may not reach its equilibrium temperature. How
quickly it does so depends on the difference between its
initial temperature at release and its equilibrium tem-
perature. It also depends on its emissivity and thermal
mass. For a heavy object, such as a warhead, the time to
reach equilibrium can be many hours, much longer than
the actual time it spends in space. On the other hand,
for very light objects, such as balloon decoys, equilibrium
could be reached in a matter of minutes.

Furthermore, for an object at an absolute temperature
T , the total power PS(λ, T ) received by the sensor in a
small bandwidth ∆λ centered at wavelength λ is approx-
imately given by

PS(λ, T ) =
τ(λ)AOAC

πR2
ε(λ, T )M(λ, T )∆λ, (6)

where τ(λ) is the spectral atmospheric transmissivity,
AO is the receiving area of the sensor optics, R is the
range of object to the aperture of a system, and ε(λ, T )
and M(λ, T ) represent the emissivity and spectral radi-
ant exitance for the wavelength λ at temperature T , re-
spectively. According to Planck’s formula, M(λ, T ) can
be described with a relation stated as

M(λ, T ) =
c1

λ5
(ec2/λT − 1)−1, (7)

where c1 and c2 are radiation constants given by
3.7418×108 W·m−2·µm4 and 1.4388×104 µm·K, respec-
tively.

This is achieved based on the fact that the IR signal
from a space-object varies as a function of the projected
area observed by the sensor. As each space-object ro-
tates, precesses, and/or tumbles, the projected area seen
by the sensor changes, resulting in a signal. This signal
is a point of light with a time-changing intensity for each
object. Although missile fragment and warhead possess
similar temperatures, the variation range of emissivity-
area product, ε(λ, T )AC, of the former can be larger than
that of the latter due to its tumble or precession because
it is not spin-stabilized.

As analyzed above, the feature selected for discrimina-
tion is concluded in Table 1. We use a PNN to identify
the targets. The general PNN is a direct neural-network
implementation of the Parzen non-parametric probabil-
ity density function (PDF) estimation and the Bayesian
classification rule.

Considering the general case being evaluated in this
work, one is faced with the problem of classifying a given
d-dimensional input vector (the feature vector) x in one
of K classes c1, c2, · · · , cK . For the “0−1” cost function,
the Bayesian classifier leads to the maximum a posteriori
(MAP) classifier, i.e.,

C(x) = arg max p (x |ci )P (ci), i = 1, 2, · · · ,K, (8)

where C(x) is the class of input x belonging to {ci, i =
1, 2, · · · ,K}, and P (ci) and p(x |ci ) are the a priori prob-
ability and a conditional PDF for class ci, respectively.
The key issue for the implementation of this Bayesian
classifier is to extract the conditional distributions from
the training data set. When a Gaussian kernel is adopted,
the Parzen PDF estimator can be represented by

p(x |ci ) =
1

Ni(2π)d/2σd

Ni∑
j=1

exp

[
− (x − x(j)

i )T(x − x(j)
i )

2σ2

]
,

(9)

where Ni is the number of samples in the training set be-
longing to class ci, x(j)

i represents the jth sample belong-
ing to class ci, and σ is called the smoothing parameter.

PNN is a direct implementation of the above estima-
tor. It consists of three feedforward layers: input layer,
pattern layer, and summation layer (Fig. 1).

The input layer works as a distribution mechanism and
receives input components from the data set. Therefore,
the number of nodes in this layer is equal to the dimension
of the input vector. All of these nodes are fully connected
with the nodes in the pattern layer, representing all in-
stances of the dataset. The pattern layer consists of K
pools of the pattern neurons. In each pool, there are Ni

number of pattern neurons, i = 1, 2, · · · ,K. Since PNN
is applicable to general classification problems, assuming
that the feature vector to be classified must belong to
one of these known classifications, the absolute proba-
bilistic value of each classification is not important. In
addition, only the relative value needs to be considered.
Hence, for the input feature vector x, the output of each
pattern neuron is given by

f(x;σ) =
1
Ni

exp

[
− (x − x(j)

i )T(x − x(j)
i )

2σ2

]
, (10)

where x(j)
i is the weight vector of the jth neuron in the

ith pool, and the nonlinear function, f(·), represents the
activation function of the neurons. In total, there are K
neurons in the summation layer where the ith neuron,
i = 1, 2, · · · ,K, forms the weighed sum of all the outputs
from the ith pool in the pattern layer. The weights of
the summation layer are determined by the decision cost

Table 1. Variation Range of the Characteristic Parameters of Objects in Space

Object Type Release Temperature
Temperature Emissivity-Area Product

Variation Range Variation Range

Warhead About 700 K Slow Small

Missile Fragment About 600 K Fast Large

Balloon Decoy About 300 K Fast Small
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Fig. 1. Structure of the PNN.

function and the a priori class distribution. For the ”0-1”
cost function and the uniform a priori class distribution,
the weights will be one for all the neurons in the sum-
mation layer. For the input pattern x of the unknown
class, the final decision can be attained through a simple
comparison of all the outputs given by

x ∈ ck, if Ok > Oi, i 6= k, i, k ∈ {1, 2, · · · ,K}.
(11)

The emissivities of real objects are functions of wave-
length, temperature, and surface condition. Therefore,
any method for the radiometric determination of temper-
ature that does not account for emissivity can produce
significant errors.

Ratio or two-color pyrometers can circumvent the emis-
sivity measurement issue in certain specific cases. The
two-color method uses an approximation of the Planck
relation called the Wien radiation relation given as

M(λ, T ) ≈ c1

λ5
e−c2/λT . (12)

Assuming τ(λi) = τ(λj) and ∆λi = ∆λj , the object tem-
perature T can be solved using the radiation ratio of two
different wavelengths as follows:

1
T

=
ln PS(λi,T )

PS(λj ,T ) − 5lnλj

λi
− ln ε(λi,T )

ε(λj ,T )

c2( 1
λj

− 1
λi

)
. (13)

If, in addition, we suppose ε(λi, T ) = ε(λj , T ) (i.e., for
a gray body), the object temperature T can be approx-
imately estimated by the color temperature TC(λi, λj),
which is given by

1
TC(λi, λj)

=
ln PS(λi,T )

PS(λj ,T ) − 5lnλj

λi

c2( 1
λj

− 1
λi

)
. (14)

The accuracy of this measurement depends not only on
the signal-to-noise ratio (SNR), but also on how much
variation exists in the emissivity of the target over the
spectral ranges being used and the amount of tempera-
ture variation over the target.

To further increase the accuracy of the measurement,
the emissivity must be modeled better. This can be
achieved by measuring the spectral radiance at a larger
(> 2) number of wavelengths. By combining Eqs. (13)
and (14), we can have

ln
ε(λi, T )
ε(λj , T )

− c2

( 1
λi

− 1
λj

) 1
T

= −c2

( 1
λi

− 1
λj

) 1
TC(λi, λj)

.

(15)

In most cases, emissivity can be adequately represented
by a smooth function of wavelength having a number of
undetermined parameters. Thus, we can model the natu-
ral logarithm transformation of the ratio between ε(λi, T )
and ε(λj , T ) as a polynomial function:

ln
ε(λi, T )
ε(λj , T )

=
L−2∑
l=0

al(λi − λj)l. (16)

It can be easily proven that a0 = 0, so that

a1(λi − λj) + · · · aL−2(λi − λj)L−2 − c2(
1
λi

− 1
λj

)
1
T

= −c2(
1
λi

− 1
λj

)
1

TC(λi, λj)
. (17)

Here, the unknown parameters are the al (1 6 l 6 L−2)
coefficients and the absolute temperature T . For a num-
ber of L detection bands, we can have L(L − 1)/2 ra-
diation ratios. The overdetermined system of equations
is inconsistent and generally has no solution. More pre-
cisely, we can minimize the square root of the sum of the
squares of the error as

fE = ‖ Ax − b ‖2, (18)

where

A =


(λ1 − λ2) · · · (λ1 − λ2)L−2 −c2(

1
λ1

− 1
λ2

)

...
...

...
...

(λL−1 − λL) · · · (λL−1 − λL)L−2 −c2(
1

λL−1
− 1

λL
)

 , x = [ a1 · · · aL−2 1/T ]T ,

b = −c2

[
(

1
λ1

− 1
λ2

)
1

TC(λ1, λ2)
· · · (

1
λL−1

− 1
λL

)
1

TC(λL−1, λL)

]T

.

(19)

Using least squares estimation approach, the following
equation is obtained:

xLS = (ATA)−1ATb. (20)

In this manner, more precise determination of tempera-

ture can be made by reducing the uncertainties due to
the unknown emissivity of the object.

Once we estimate the temperature of an object, it is
also possible to estimate ε(λi, T )AC. Using Eq. (6), we
obtain an equation for the emissivity-area product of the
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object as a function of measured or estimated values.
This is given by

ε(λi, T )AC =
πR2PS(λi, T )

τ(λi)AOM(λi, T )∆λi
. (21)

Properly evaluating the target discrimination algo-
rithm requires multispectral IR data based on target fea-
tures, such as dynamics, surface emissivities, and tem-
peratures. Unfortunately, these data are not available.
Thus, the creation of simulated data based upon certain
standard models for IR signal intensities in the bands of
interest is necessary. One standard model, referred to
as the Bhattacharyya optical decoy evaluation (BODE)
model, produces the time series of the IR measurements
and includes long-term time trends.

According to a slightly simplified second-order form of
the model, the relative measured IR intensity, Ji(t), for
the ith waveband is given by

Ji(t) = Ai + Bit + Cit
2 + Si sin(ωt + φ) + ni(t), (22)

where Ai indicates an average intensity, Bi is a linear
intensity change with time, and Ci is a quadratic inten-
sity change with time; Si represents the sinusoidal am-
plitudes; the frequency ω is assumed to be the same for
all bands (for a given object) and indicates the coning or
precession rate of the object; the phase φ is the same for
all bands and is not considered physically significant for
discrimination; ni(t) is considered to be zero mean, ad-
ditive noise. SNR for the ith waveband is defined as the
ratio of the square of the modulating sinusoid amplitude
to the variance of the additive Gaussian noise. This is
given by

SNRi =
S2

i

E[n2
i (t)]

. (23)

The number of spectral bands adopted during the whole
test was 12, which was evenly distributed in the range of
4−15 µm.

According to the BODE model and the parameters in
Table 2, the intensity history of three types of space-
objects for the ith waveband with SNRi = 1 was ob-
tained, as shown in Fig. 2.

Thus, in order to reduce the dimensionality of the in-
put vectors, we decided to adopt the temperature and
emissivity-area products of the time-varying object as
characteristics.

The dynamic temperature of the space-object can
be easily extracted from the simulated data using the
method proposed above. Figure 3 shows the comparison

Fig. 2. Intensity history for three types of space-objects.

Fig. 3. Comparison between the original and predicted tem-
peratures.

Fig. 4. PDFs corresponding to the temperature for the three
types of space-objects.

Table 2. Basic Parameters of Space-Objects

Object Type Warhead Missile Fragment Balloon Decoy I Balloon Decoy II

Release Temperature (K) 700 600 300 300

Shape Cone Cylinder Sphere Sphere

Surface Coating Aluminum Aluminum Aluminum Mylar

Density (g/m3) 2.7×106 2.7×106 2.7×106 1.39×106

Specific Heat (J/(g·K)) 0.904 0.904 0.904 1.15

Emissivity 0.036 0.036 0.036 0.5

Absorptivity 0.192 0.192 0.192 0.17
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Fig. 5. PDFs corresponding to the emissivity-area products
of the three types of space-objects.

Table 3. Comparison of Identif ication Results
Between Two Methods

SNR 1 2 3

Object W F D W F D W F D

RPNN(%) 73.8 70.1 69.4 87.6 84.1 84.7 99.1 98.4 98.2

RBP(%) 64.2 61.3 63.2 72.7 71.2 73.4 89.5 86.3 88.4

* RPNN and RBP are average success rates using PNN and
BP, respectively; W, F, and D stand for warhead, missile
fragment, and balloon decoy, respectively.

between the original and predicted temperatures deter-
mined by two different means; the former was obtained
by the multi-color method proposed above, and the lat-
ter by the conventional two-color pyrometers. It can eas-
ily be observed that the prediction error of the former
method is smaller. Thus, in this manner, more precise
determination of temperature can be made.

In order to appreciate the discriminating power of the
available variables, we constructed the PDFs for each of
the two dynamic features conditioned on different object
types p(xj |ci), where j = 1−2 and i = 1−3, as shown
in Figs. 4 and 5, respectively. As these graphs show,
both of these two dynamic features constitute very good
discriminants.

The whole data set we used for the present study con-
sisted of 100 signatures for each type of objects. Data
were gathered for 5 s in 0.5-s increments (11 time steps)
starting, as noted earlier, 30 s before intercept. These
were then encoded onto the neural network for each ob-
ject in the scene. All of these were used in the con-
struction of the PDFs for each of the dynamic features.
The comparison of identification results between PNN
and back-propagation (BP) under different single-band
SNRs are shown in Table 3.

The results confirm that the algorithm proposed in this
letter can obtain better performance on target discrim-
ination with low SNR than the conventional BP neural
network.

In conclusion, an algorithm for exo-atmospheric target

discrimination from a sequence of multispectral IR data
has been proposed. The proposed method can be ap-
plied in TBMD applications. We use a PNN that, when
provided with dynamic characteristics extracted from a
multispectral IR data, outputs the probability of an ob-
ject belonging to any one of a number of possible classes.
The PNN is superior to others that simply provide a yes
or no decision or even some “confidence index”, although
its relation to the actual probability is unknown. Indeed,
the information supplied by the PNN is based on Bayes
theory, which provides an optimal and sound mathemat-
ical basis for decision-making. Another major advantage
of PNNs is their short training time. They are ready to
perform their classification task after being shown, only
once, a set of exemplars of objects of the various classes
to be learned. Results demonstrate that the trained neu-
ral networks are able to successfully identify warheads
from other missile parts and decoys.
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