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Curvelet-based palm vein biometric recognition
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A novel personal recognition system utilizing palm vein patterns and a novel technique to analyze these vein
patterns is presented. The technique utilizes the curvelet transform to extract features from vein patterns
to facilitate recognition. This technique provides optimally sparse representations of objects along the
edges. Principal component analysis (PCA) is applied on curvelet-decomposed images for dimensionality
reduction. A simple distance-based classifier, such as the nearest-neighbor (NN) classifier, is employed.
The experiments are performed using our palm vein database. Experimental results show that the algo-
rithm reaches a recognition accuracy of 99.6% on the database of 500 distinct subjects.
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Personal recognition has become an important and in-
demand technique for security access systems in the last
decade. Biometric recognition techniques, such as face,
iris, fingerprint, and palm print, have been intensively
studied and developed to resolve security problems inher-
ent in traditional personal recognition methods as well
as to improve the reliability of these methods[1,2]. The
main advantage of biometric recognition techniques over
other conventional recognition methods, such as keys,
passwords, and personal identification numbers (PINs),
is that they are not prone to theft and loss, and do not
rely on the memory of their users. Recently, hand vein
pattern biometrics has attracted increasing interest from
both research communities[3−5] and industries[6]. The
uniqueness, stability, and strong immunity to forgery of
vein patterns comprise a potentially good biometric that
offers secure and reliable features for person identity
recognition[7].

A research team from the Australian Institute of Se-
curity and Applied Technology[3] and a Korean research
team both used active infrared (IR) imaging[4] techniques
to acquire vein patterns at the back of the hand. Im et
al. employed a charge-coupled device (CCD) camera
to capture vein-pattern images[8]. Fujitsu Laboratories
investigated the vein patterns in the palm side of the
hand[6]. Lin et al. used the feature points of the vein
patterns in the thermal images as a hand vein feature[5].
Wang et al. utilized minutiae features extracted from
the vein patterns for recognition[7], and employed multi-
resolution wavelet analysis to extract the features in the
hand vein images[9].

To our knowledge, no organization has carried out re-
search on palm vein pattern biometric recognition tech-
nology except for Fujitsu; however, the company has
not disclosed the features they used in any published
research articles. In this letter, we propose a new per-
sonal recognition system using vein patterns in the palm
side of the hand. This system is convenient for ac-
quiring vein images compared with those based on vein
patterns at the back of the hand. Since the palm vein
patterns are curvilinear, we use curvelet transform to
extract the features of palm vein patterns, because it
has strong directional capability to represent edges and

other singularities along curves. This method of extract-
ing features has been reported since the introduction of
second-generation curvelet transform in 2006[10]. Fur-
thermore, the nearest-neighbor (NN) classifier is used to
test the algorithm using our palm vein image database.

Biologically, a medical spectral window extends ap-
proximately from about 700 to 900 nm, in which light
penetrates deeply into tissues, allowing for noninvasive
investigation[11]. In addition, the hemoglobin in venous
blood absorbs more IR radiation than the surround-
ing tissue[3]. Therefore, shooting an IR light beam at
the desired body part could capture an image using a
CCD camera with an attached IR filter. In the resulting
image, the vein patterns appear darker than the sur-
rounding parts and become easily discernible.

Since there is no palm vein pattern database which is
publicly available for research, we thus designed our own
near-IR palm vein image acquisition system to utilize
palm vein patterns for recognition. In this system, we
used an array of light-emitting diodes (LEDs) that emit
IR light at a wavelength of 850 nm to shine IR light onto
the palm side of the hand. On the same side, an IR CCD
camera with spectral response peaking at a wavelength
of around 850 nm was used to obtain the image of the
palm vein. To dissipate the effect of visible light, an IR
filter was mounted in front of the camera lens.

With this system, we constructed our own palm vein
image database. It has 50 distinct participants and con-
tains 1000 palm vein images from 100 different hands.
The ages of these participants range from 18 to 60 years
old. The images are in 256 level gray-scale of 640×480
pixels, and are stored in BMP format. Figure 1 shows
several images from our database.

To increase recognition accuracy and reliability, the
features of vein patterns were extracted from the same
region in different palm vein images. We selected the
second and fourth finger webs to fix the region known
as region of interest region of interest (ROI). Figure 2(a)
shows the result of the extracted ROI for the palm vein
image in Fig. 1(a).

A 5×5 median filter was adopted to remove the speck-
ling noise in the ROI image. The normalization process
was performed to eliminate the influence of different
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Fig. 1. Palm vein images of four different hands from our
database.

Fig. 2. ROI of original image and the result of image en-
hancement. (a) ROI for the palm vein image; (b) after noise
reduction and normalization.

illumination intensity and time. The normalization
methods employed in this work are similar to those sug-
gested by Hong et al.[12].

Figure 2 shows the ROI of the original image and that
enhanced with noise reduction and normalization.

Conceptually, the curvelet transform is a multiscale
pyramid with many directions and positions at each
length scale, as well as needle-shaped elements at fine
scales[13]. Curvelet transform directly takes the edge as
the basic representation element; it also provides opti-
mally sparse representations of objects along the edges.
Such representations are sparser than the wavelet de-
composition of the object[14]. This was first developed
by Candès et al. in 1999, while the second generation
was introduced in 2006[10]. The latter is simpler, faster,
and less redundant compared with the first-generation
curvelet transform[15].

The curvelet transform and digital implementation are
introduced as follows[10,13−17]. The digital curvelet takes
Cartesian arrays of the form f [t1,t2], 0 ≤ t1, t2<n as in-
puts, and outputs a collection of coefficients cD(j, `, k)
expressed as

cD(j, `, k) =
∑

f [t1,t2]φD
j,`,k[t1, t2], (1)

where each φD
j,`,k is a digital curvelet waveform. In the

digital definition, the window Uj does not exactly extract
frequencies near the dyadic corona

{
2j ≤ r ≤ 2j+1

}
and

near the angle
{−π · 2−j/2 ≤ r ≤ π · 2−j/2

}
, and must be

adapted to Cartesian arrays as illustrated in Fig. 3. The
“Cartesian window” Ũj(ω) is the product of the radial
and angular window such as

Ũj(ω) = W̃j(ω)Vj(ω), (2)

where W̃j(ω) and Vj(ω) obey certain admissibility condi-
tions. Therefore, given a Cartesian array f [t1,t2], 0 ≤ t1,

t2<n, we let f̂ [t1,t2] denote its two-dimensional (2D) dis-
crete Fourier transform as

f̂ [n1, n2] =
n−1∑
t1,t2

f [t1, t2]e−i2π(n1t1+n2t2)/n,

−n/2 ≤ n1, n2 < n/2. (3)

Then the parabolic window Ũj [n1,n2] is supported on a
rectangle Pj with length L1,j and width L2,j ,

Pj = {(n1, n2) : n1,0 ≤ n1 < n1,0 + L1,j ,

n2,0 ≤ n2 < n2,0 + L2,j}, (4)

where (n1,0, n2,0) is the index of the pixel at the bottom-
left of the rectangle.

Therefore, the fast discrete curvelet transform (FDCT)
via unequally spaced fast Fourier transform (USFFT) is
evaluated as

cD(j, `, k) =
∑

n1,n2∈Pj

f̂ [n1,n2−n1 tan θ1]Uj [n1,n2]

exp[i2π(k1n1/L1,j + k2n2/L2,j)]. (5)

Curvelets are good at representing objects with curve-
punctuated smoothness[16]. Palm vein images with edges
are good examples of these kinds of objects. Therefore,
the curvelet transform coefficients (CTCs) were used in
this letter to represent the features of palm vein images.
Our palm vein recognition system consists of two stages:
training and classification. During training, curvelet
transform was applied to decompose the images into
curvelet sub-bands.

Figure 4 shows the curvelet sub-bands for a palm
vein image taken from our dataset. Digital curvelet
transform (scale 3, angle 16) was then applied on the
original image with a size of 200×250 pixels. This pro-
duced one approximate curvelet coefficient, 16 detailed
curvelet coefficients in the detail 1 layer, and 32 detailed
curvelet coefficients in the detail 2 layer. It shows the ap-
proximate curvelet coefficients and 16 detailed curvelet
coefficients for 16 different angles in the detail 1 layer.
The images were resized to the same size for the sake of
presentation.

The approximate curvelet coefficients of each palm
vein image account for the maximum variance and con-
tain maximum energy of the image-data. We selected
the approximate curvelet coefficients of each image as

Fig. 3. Basic digital simulation of the curvelets.
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Fig. 4. Curvelet transform of the palm vein pattern. (a)
The original image; (b) the approximate coefficients; (c)−(r)
detailed coefficients at 16 angles in the detail 1 layer.

Fig. 5. Curvelet- and PCA-based results.

its first feature vector, and two other detailed sub-bands
as the second and third feature vectors. Principal com-
ponent analysis (PCA) was applied on the selected sub-
bands for dimensionality reduction. In the classification
stage, the test images were subjected to the same op-
erations. Once the curvelet sub-images were projected
to the desired feature-space, a simple NN classifier was
employed with three feature vectors of each object. The
classification results were obtained using the weighted
Euclidean distance.

To evaluate the performance of our system, we ran-
domly selected five images per subject from our database
as the prototypes in the training stage, and used the rest
for testing.

In the recognition stage, the correct recognition rate

(CRR) was used to test the algorithm. The number
of principal components was varied to display how the
recognition rate changed with a selection of eigenvectors.
Figure 5 shows that the recognition rate achieved 99.6%
at principal components of 70%. The results indicate the
good performance of our system.

In conclusion, a new personal recognition system using
palm vein patterns is proposed. This system is con-
venient in acquiring vein images compared with those
based on vein patterns at the back of the hand. Curvelet
transform is employed to extract the features of palm
vein patterns. PCA is applied on curvelet-decomposed
images for dimensionality reduction. In addition, NN
classifier is also used. Experimental results show that
the algorithm reaches a recognition accuracy of 99.6%
on the database of 500 distinct subjects. This indicates
that the CTCs could represent the features of palm vein
images well, and that our system has excellent recogni-
tion performance.
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