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Sparse Bayesian reconstruction method for multispectral
bioluminescence tomography
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We present a sparse Bayesian reconstruction method based on multiple types of a priori information
for multispectral bioluminescence tomography (BLT). In the Bayesian approach, five kinds of a priori
information are incorporated, reducing the ill-posedness of BLT. Specifically, source sparsity characteristic
is considered to promote reconstruction results. Considering the computational burden in the multispectral
case, a series of strategies is adopted to improve computational efficiency, such as optimal permissible
source region strategy and node model of the finite element method. The performance of the proposed
algorithm is validated by a heterogeneous three-dimensional (3D) micron scale computed tomography atlas
and a mouse-shaped phantom. Reconstructed results demonstrate the feasibility and effectiveness of the
proposed algorithm.
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The emergence of new imaging modalities and ap-
proaches that provide cellular and molecular informa-
tion has led to the nascent field of molecular imag-
ing. Methods based on detecting optical signals in a
small animal have been leading this field[1,2]. The light-
emitting enzymes, and the technologies for detecting
their weak bioluminescent signals with a highly sensi-
tive charge-coupled device (CCD) camera in living sub-
jects, comprise the method called in vivo bioluminescence
imaging[3].

Much effort has been devoted to transforming biolumi-
nescence imaging from a planar imaging technique into a
truly three-dimensional (3D) tomographic modality ap-
plication to small animals, because planar bioluminescent
imaging cannot provide depth information[3]. The reso-
lution of planar bioluminescent imaging is also limited
due to the nature of surface imaging. Therefore, biolu-
minescence tomography (BLT) is developed to explore
depth information and enhance bioluminescence imaging
resolution. As a result, BLT is particularly attractive for
in vivo applications.

Generally, BLT is an ill-posed problem and the unique-
ness of the BLT solution has been proven theoretically[4].
The uniqueness theory is not only instructional in recon-
structing a bioluminescent source distribution, but also
presents that the ill-posedness of BLT could be overcome
with sufficient a priori information.

Since the concept of BLT was introduced, it has
made great progress in modeling and reconstruction
algorithms[5−11]. Currently, BLT reconstruction-based
spectrum information has gained much attention as
BLT reconstruction results have improved, with hyper-
spectral and multispectral methods[5−8]. In addition, the
importance of multiple types of a priori information has
been recognized. The more the a priori information one
applies, the better the results obtained.

The Bayesian approach provides a framework to in-
corporate multiple types of a priori information. We
have proposed a BLT reconstruction algorithm based on
the Bayesian approach to reconstruct a bioluminescent
source, in which a generalized adaptive Gaussian Markov
random field (GGMRF) prior model for unknown source
density estimation is presented[9]. However, the sparse
nature of the internal source to promote reconstructed
quality is not considered in the prior model[10]. Further-
more, the permissible source region used in the previous
algorithm is inferred through the light power distribu-
tion on the surface, which is hardly determined when
the underlying source is located in a deep position. The
large-scale reconstruction data also significantly affect
reconstructed efficiency in the multispectral case.

In this letter, we describe a sparse Bayesian approach
for multispectral BLT. Furthermore, multiple types of
a priori information are incorporated into the Bayesian
framework to reduce the ill-posedness of the BLT prob-
lem, specifically the sparsity of source and the optimal
permissible source region.

In bioluminescence imaging, photon propagation can
be described by the steady-state diffusion equation and
Robin boundary condition. Taking into account the in-
fluence of light wavelength λ on tissue optical property,
the following model is thus given:

−∇ · [D(r, λ)∇Φ(r, λ)] + µa(r, λ)Φ(r, λ)
= x(r, λ) (r ∈ Ω), (1)

Φ(r, λ) + 2A(r;n, n′)D(r, λ)[ν(r)
·∇Φ(r, λ)] = 0 (r ∈ ∂Ω), (2)

where Ω is a bounded smooth domain; ∂Ω is the cor-
responding boundary; Φ(r,λ) denotes the photon flux
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density (W/mm2); x (r,λ) is the bioluminescent source
density (W/mm3); µa(r, λ) is the absorption coefficient
(mm−1); D(r, λ) is the optical diffusion coefficient
(mm) g is the anisotropy parameter; and ν(r) is the
unit outer normal on ∂Ω. Given the mismatch be-
tween refractive indices n for Ω and n′ for the external
medium, A(r;n, n′) can be approximately represented
as A(r;n, n′) ≈ 1+R(r)

1−R(r) , where R(r) ≈ −1.4339n−2 +
0.7099n−1 + 0.6681 + 0.0636n. The measured quantity is
the outgoing flux density Q(r, λ) on boundary ∂Ω and
can be expressed as

Q(r, λ) = −D(r, λ)(ν(r) · ∇Φ(r, λ))

=
Φ(r, λ)

2A(r;n, n′)
(r ∈ ∂Ω). (3)

In the practical experiment, outgoing flux density is gen-
erally detected with a bandpass filter, thus the continu-
ous spectral range of bioluminescence light can be divided
into m bands τ1, · · · , τm, with τl = [λl−1, λl], l = 1, 2, · · · ,
m. Calculating the multispectral forward model requires
a solution for the monochromatic case for each wave-
length τl. Generally, a finite element method based on
discretized elements is adopted. However, the computa-
tion burden is very large in the multispectral case. To
improve reconstruction speed, the finite element method
based on nodes is applied to compute the forward model
for each wavelength τ

[12]
l . We use the vector x to denote

the set of unknown source density. Finally, a vector func-
tion f(x) is obtained by integrating the monochromatic
models over the source spectrum[7−9].

The uniqueness theorem shows that the BLT is
not unique unless adequate a priori information is
incorporated[4]. In the algorithm, besides multispectral
information, anatomical and optical information of tis-
sues are first used to deal with the non-uniqueness of BLT
and constrain the possible solution of source reconstruc-
tion. The importance of permissible source region strat-
egy is widely applied[7−9,12]. In this letter, an optimal
permissible source region strategy is applied to improve
reconstruction quality[8]. In finite element analysis, the
given domain Ω can be discretized into Nt tetrahedron
elements and Nv vertex nodes. Taking into account the
optimal permissible source region information PS, there
are NP independent vertices in the permissible source
region which represent the possible unknown source dis-
tribution. Column vector x is then reduced to the set of
source density distribution of NP vertices.

Φmeas
k (τl) (l = 1, · · · ,m) is assumed as the mea-

sured photon flux density of wavelength τl at the kth

detector position (k = 1, 2, · · · ,M). The measure-
ments of wavelength τl as single column vectors y(τl):
y(τl)=[Φmeas

1 (τl),Φmeas
2 (τl), · · · ,Φmeas

M (τl)]T are then or-
ganized. In the multispectral case, the measurements are
organized as a vector y=[y(τ1),y(τ2), · · · ,y(τm)]T. The
maximum a posteriori (MAP) estimate of x given by the
measurement vector y can be represented as

x̂MAP = arg max
x≥0

logp(x|y)

= arg max
x≥0

{
log p(y|x) + log p(x)

}
. (4)

Considering the real physical meaning, nonnegative
constraint x ≥ 0 is adopted. Taking into account
anatomical tissue information C and optimal permissible
source region information PS, the MAP estimate can be
further modified as

x̂MAP = arg max
x≥0

{
log p(y|x,C ,PS)

+ log p(x|C ,PS)
}
, (5)

where p(y|x,C ,PS) is the data likelihood and
p(x|C ,PS) is the conditional probability density func-
tion of x given C and PS. Given the forward model in
Eqs. (1) and (2), the data likelihood is governed mainly
by noise statistics. Therefore, Eq. (5) is reduced to

x̂MAP = arg max
x≥0

{
log p(y|x) + log p(x|C ,PS)

}
. (6)

In the Bayesian framework, the data likelihood p(y|x)
is required. The bioluminescence experiment generally
operates at low temperature, therefore photon detection
can be modeled using shot noise statistics. Thus, the
data likelihood can be given by[13]

p(y|x) =
1

(πα)m∗M |Λ|−1
exp

[
−‖y − f(x)‖2

Λ

α

]
, (7)

where α is the parameter related to noise variance,
Λ is the diagonal covariance matrix with the size of
(m ∗M)× (m ∗M), ‖ω‖2

Λ = ωTΛω, and the vector value
function f(x) represents the exact value of the outgo-
ing flux for the assumed value of source density x, which
has been solved previously. For BLT, we assume that
the measurements are statistically independent with the
variance of each measurement equal to its mean[13], there-
fore Λ is diagonal. In our simulations, we approximately
assume Λ as

Λ =



Φmeas
1 (τl) · · · 0 0 · · · 0

...
. . .

...
...

...
0 · · · Φmeas

M (τl) 0 · · · 0
0 · · · 0 Φmeas

1 (τ2) · · · 0
... · · ·

...
...

. . .
...

0 · · · 0 0 · · · Φmeas
M (τm)


.

(8)

Bayesian framework requires that a prior unknown
variable x is assigned. Now, the importance of the
sparseness of signal has been recently recognized, and

the reconstruction results could benefit from the a
priori information[10]. In the proposed algorithm,
sparseness, which is the Laplace density function,
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is used:

p(x|C ,PS) = (λs/2)N exp

(
−λ

N∑
i=1

|xi|

)
, (9)

where λs denotes scale parameters, which could be de-
termined by the algorithm proposed in Ref. [14]. If α
is unknown, referring to Eqs. (7) and (8), the source
reconstruction problem can be stated as the following
optimization problem:

arg max
x≥0

max
α

{
− 1

α
‖y − f(x)‖2

Λ − M ∗ m ∗ log α

+ N log(λ/2) − λ

N∑
i=1

|xi|

}
. (10)

In the optimization process, α is adaptively estimated,
which can be solved by viewing the problem (9) as a cost
function of α and setting the derivative with respect to
α equal to zero. We can then obtain

α =
1

M ∗ m
‖y − f(x)‖2

Λ. (11)

Substituting Eq. (10) into (9), the optimization prob-
lem is converted into

x̂ = arg max
x≥0

{
−M ∗ m

− M ∗ m ∗ log
(

1
M ∗ m

‖y − f(x)‖2
Λ

)
+ N log(λ/2) − λ

N∑
i=1

|xi|

}
, (12)

where x̂ is an estimate of the unknown source density x.
After neglecting constant terms, we can define the log
posterior probability l(x) as

l(x) = −M ∗ m ∗ log
(

1
M ∗ m

‖y − f(x)‖2
Λ

)
− λ

N∑
i=1

|xi|. (13)

The log posterior probability in Eq. (12) is used as a
criterion for the convergence in our experimental results.
In the practical calculation procedure, maximizing l(x)
by maximizing with respect to α and x uses the following
equations:

α̂ =
1

M ∗ m
‖y − f(x̂)‖2

Λ, (14)

x̂ = arg max
x≥0

{
− 1

α̂
‖y − f(x)‖2

Λ − λ

N∑
i=1

|xi|

}
. (15)

In this letter, a 3D micron scale computed tomography
(micro-CT) mouse atlas is used to provide anatomical
information. The mouse is then manually segmented into

different tissue organs. In the following bioluminescence
experiments, only the thorax micro-CT images are used,
including lung, bone, heart, liver, and muscle, as shown
in Fig. 1. Based on the emission spectral distribution,
the spectrum range of [600, 750] nm can be divided
into three discrete bins with a step of 50 nm. In the
experiments, the optical properties of each component
are assumed to be a priori information and computed
according to the formulations given in Ref. [15]. The
results are compiled in Table 1.

In view of “inverse crime” of BLT, the synthetic data
are produced using Monte-Carlo-based method[16]. The
mesh used in this method includes 49992 triangles and
24998 surface measurement points.

To avoid the “inverse crime”, the mesh used in the
reconstruction procedure is a much coarser volumetric
mesh than that used in the simulating photon trans-
port, which includes 2579 nodes, 13200 tetrahedron el-
ements, and 697 boundary measurement points. All
reconstructions were performed on a computer with an
Intel processor (Pentium 4, 3.4 GHz) and 2-GB RAM.
The convergence criterion was lk(x) − lk−1(x) < 0.02 or
k > kmax, where k is the iterative number and kmax is
the maximum iterative number.

At first, a solid spherical source with 1-mm radius was
centered at 22.8, 28.6, and 12.5 mm inside the lung.
With the proposed algorithm, the reconstruction re-
sults are shown is Fig. 2. We can accurately localize
the source and the center position of the reconstructed
source at 23.48, 28.55, and 12.04 mm. The reconstructed
time was about 240 s. Figure 3 shows the convergence of
the log posterior probability as a function of the number
of iterations, which reveals the fast convergence.

The parameters used in our algorithm were adaptively

Fig. 1. View of the mouse phantom after segmenting. (a)
Coronal view of micro-CT data; (b) sagittal view; (c) trans-
verse view.

Table 1. Optical Parameters in Different Bands
(mm-1)

Material Muscle Heart Lung Liver Bone

600–650 nm
µa 0.244 0.166 0.549 0.993 0.170

µ′
s 0.527 1.069 2.259 0.731 2.775

660–700 nm
µa 0.077 0.052 0.174 0.313 0.054

µ′
s 0.413 0.945 2.157 0.668 2.444

700–750 nm
µa 0.040 0.028 0.090 0.165 0.028

µ′
s 0.337 0.853 2.077 0.620 2.201
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estimated. To illustrate its feasibility, we com-
pared it with the conventional sparse method, i.e., l1
regularization[10]. Similar reconstructed results with the
conventional sparse method are shown in Fig. 4. The
corresponding regularization parameter was 1.0 × 10−9,
which was chosen by experimental method. The re-
construction took about 960 s in the above mentioned
computer.

Finally, a light source was placed almost at the center
position of the CT mouse (at 20.8, 30.98, and 12.5 mm)
to verify the proposed algorithm. The reconstructed re-
sults are demonstrated in Fig. 5. The source is shown to
localize accurately (20.37, 31.05, and 12.95 mm). This
accounts for the good source depth reconstruction of the
proposed algorithm.

To verify the proposed algorithm, a commercially
available solid mouse-shaped homogeneous phantom
with an embedded bioluminescence source was used.
More detailed information about the phantom can be
found in Refs. [10, 17]. To acquire the phantom
shape and the source position, a micro-CT system
was used. The mesh with 1694 nodes and 6416 tetra-
hedral elements used for reconstruction was obtained
based on the micro-CT images

(
Fig. 6(a)

)
. To ac-

quire spectral measurement data, a group of cutoff
filters and a liquid-nitrogen-cooled back illuminated
CCD camera were used. After image processing, we
obtained two bands of measurement data, specifically
[600, 650] nm and [650, 700] nm. The measured data

Fig. 2. Reconstructed light source distributions for three
different slices of the reconstruction. (a) and (c) are perpen-
dicular to the z-axis direction off the actual source’s center
at about ∓ 0.5 mm, (b) is through the actual source’s center.
The black circles denote the actual source.

Fig. 3. Log posterior probability as a function of number of
iterations.

Fig. 4. Reconstructed light source distributions with 11 regu-
larization for three slices of (a) z = 12 mm, (b) z = 12.5 mm,
and (c) z = 13 mm, respectively.

were mapped on the surface of the phantom. Figure
6(b) illustrates the mapped result for the band [600, 650]
nm. The corresponding optical parameters of these two
bands and the energy contributions can be obtained by
the product introduction. The actual source position
(21.2, 25.3, and 28.4 mm) was also determined by micro-
CT images.

When the BLT reconstruction was performed using the
monochromatic experimental data in [600, 650] nm, the
source was not localized with the proposed algorithm.
The corresponding reconstructed result is shown in Fig.
7(a). However, a promising result was obtained with
the proposed algorithm, and the reconstructed central
position of the source was 21.6, 25.0, and 30.2 mm, as
shown in Fig. 7(b). The reconstructed central position
was 23.2, 27.2, and 27.8 mm with the method of Ref. [9].
The result is illustrated in Fig. 7(c). The reconstructed
results revealed that our tomographic algorithm can pro-
vide high-performance reconstruction quality.

In this letter, a sparse Bayesian based reconstruc-
tion algorithm is proposed for multispectral BLT. Mul-
tiple types of a priori information are utilized to im-
prove BLT reconstruction. Sparse source characteristics
are also considered in the Bayesian approach. Related
parameters used in the Bayesian approach are adap-
tively estimated, which makes the algorithm appropriate
for practical application. Simulation verifications with
Monte-Carlo-based data demonstrate that our proposed
algorithm can acquire similar reconstructed results with
the popular l1 sparsity regularization. Reconstruction
of sources localized at deeper positions further proves
the effectiveness of the proposed algorithm. In addition,
the proposed algorithm can be properly verified using
the real 3D micro-CT mouse phantom. Experimental
reconstruction with a mouse-shaped phantom illustrates
the potential of the proposed algorithm.

BLT is an ill-posed inverse source problem, and it
is necessary to incorporate sufficient a priori infor-
mation. Currently, five types of a priori information
are verified and extensively applied in reconstruction
algorithms. These include tissue optical parameters,
anatomical information, spectral characteristic of source,
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Fig. 5. BLT reconstruction when the source is nearly located
at the mouse’s center for three different transverse views of
the reconstructed results.

Fig. 6. Mouse-shaped phantom and mapped results. (a) Vol-
umetric mesh used in reconstruction; (b) mapped photon dis-
tribution on the phantom.

Fig. 7. BLT reconstruction results with the mouse phantom.
(a) Reconstruction result with a singleband; (b) BLT recon-
struction with the proposed algorithm; (c) reconstructed re-
sult with the method of Ref. [9].

distribution of surface photons, and sparsity of source.
The five types of a priori information are utilized to im-
prove reconstruction quality in our algorithm. To the
best of our knowledge, this is the first time that five
types of a priori information are used to perform BLT
reconstruction. Theoretical and instrumentation devel-
opments have led to the widespread implementation of
multiview noncontact detection and hyper-spectral and
multispectral bioluminescence imaging. Therefore, large-

scale data and computation burden increase. In our al-
gorithm, the node model of finite element and the opti-
mal permissible source region improve the reconstruction
efficiency to a certain extent.

In conclusion, in the sparse Bayesian-based reconstruc-
tion algorithm developed for BLT, five types of a priori
information are used to improve reconstruction. Promis-
ing preliminary results are obtained in numerical simula-
tions and experiments, which prove the effectiveness of
our proposed algorithm for BLT.
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