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Moment searching algorithm for bioluminescence
tomography
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To avoid the ill-posedness in the inverse problem of bioluminescence tomography, a moment searching
algorithm fusing the finite element method (FEM) with the moment concept in theoretical mechanics
is developed. In the algorithm, the source’s information is mapped to the surface photon flux density
by FEM, and the source’s position is modified with the feedback through the algorithm of barycenter
searching, which makes full use of the position information of the photon flux density on surface. The
position is modified in every iterative step and will finally converge to the real source’s value theoretically.
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Molecular imaging will play an important role in future
medical practice, efficaciously employed to detect and
guide treatment of a disease at a stage before debilitat-
ing or irreversible symptoms appear[1]. Being a branch
of the molecular imaging, bioluminescence tomography
(BLT) has been attracting more attention due to its low
equipment cost and high signal-to-noise ratio (SNR) in
detection[2]. In BLT, molecular and cellular events can
be detected in vivo through the optical signals collected
on body surface and both forward and inverse problems
are involved, the aims of which are to obtain the flu-
ence distribution and the source distribution respectively.
However, the inverse problem is ill-posed[3]. The finite
element method (FEM) and the adaptive finite element
algorithm have been employed in BLT[4,5], but they do
not make the position information of photon flux density
on surface used fully. In this letter, we develop a moment
searching algorithm that fuses the FEM with the moment
concept in theoretical mechanics, making the known po-
sition information utilized fully and the ill-posedness of
the BLT reduced. The simulation results demonstrate
the effectiveness of the algorithm.

When carried out in a dark environment, the BLT
is modeled as the steady-state diffusion equation with
Robin boundary condition mathematically[6]:

−∇ · (D(r)∇Φ(r)) + µa(r)Φ(r) = S(r), r ∈ Ω, (1)

Φ(r) + 2A(nmed, nenv, r)D(r)(v · ∇Φ(r)) = 0, r ∈ ∂Ω, (2)

where Ω and ∂Ω are the solution domain and its
boundary respectively; Φ(r) is the photon flux den-
sity (W/mm2); µa(r) denotes the absorption coefficient
(mm−1); S(r) is the source power density (W/mm3);
D(r) = 1/(3(µa(r) + (1 − g)µs(r))) is the opti-
cal diffusion coefficient(mm), µs(r) is the scattering

coefficient (mm−1), and g is the anisotropy parameter;
v is the unit outer normal on ∂Ω; Given the refractive-
index-mismatched boundary, A(nmed, nenv, r) can be ap-
proximately represented as

A(nmed, nenv, r) =
1 + R(r)
1 − R(r)

, (3)

where R(r) ≈ −1.4399n−2+0.7099n−1+0.6681 + 0.0636n
and n = nmed/nenv; nmed is the refractive index of the
phantom medium and nenv is the refractive index of the
environment medium.

In a BLT experiment, the measured quantity is the
outgoing photon flux density on ∂Ω:

Q(r) = −D(r)(v · ∇Φ(r)) =
Φ(r)

2A(nmed, nenv, r)
. (4)

The forward problem in BLT can be represented by

Φ(r) = f(S(r)), r ∈ Ω. (5)

The other parameters including the optical and struc-
ture information of the tissues needed in solving Eq. (1)
can be obtained through diffusion optical tomography
(DOT)[7,8] and computer tomography (CT). While the
inverse problem is

S(r) = f−1(Φ(r′)), r ∈ Ω, r′ ∈ ∂Ω. (6)

We solve the diffusion equation by the FEM. The weak
form of Eq. (1) is[9,10]∫

Ω

(D(r)(∇Φ(r)) · (∇v(r) + µa(r)Φ(r)v(r))dΩ

+
∫

∂Ω

1
2A(nmed, nenv, r)

Φ(r)v(r)dA

=
∫

Ω

S(r)v(r)dΩ, ∀v(r) ∈ H1(Ω), (7)
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where H1(Ω) is the Sobolev space. Following the
Galerkin method[9,10], Φ(r) and v(r) have the same func-
tion space and Φ(r) is approximated as

Φ(r) ≈
Nnode∑
i=1

φiϕ
node
i (r), (8)

where φi is the value of the ith node; ϕnode
i (r) is the

node’s basis function and Nnode is its grid number. At
the same time, S(r) is discretized on the same finite ele-
ment mesh as

S(r) ≈
Nelem∑
j=1

sjϕ
elem
j (r), (9)

where sj is the jth element’s value and ϕelem
j (r) is the ba-

sis function defined on this element; Nelem is the total el-
ement number. The reason why the element rather than
the node is the unit used in the discretization of S(r)
is that the element is the smallest volume unit, which
makes the algorithm more sensitive in searching for the
source, while a node’s value depends on the values of the
elements connected with it.

Substituting Eqs. (8) and (9) into Eq. (7), we obtain

KΦ = FS, (10)

where K = [kij ]Nnode×Nnode ,Φ = [φi]Nnode×1, F =
[fij ]Nnode×Nelem , S = [si]Nelem×1, and

kij =
∫

Ω

D(r)(∇ϕnode
i (r)) · (∇ϕnode

j (r))dΩ

+
∫

Ω

µa(r)ϕnode
i (r)ϕnode

j (r)dΩ

+
∫

∂Ω

1
2A(nmed, nenv, r)

ϕnode
i (r)ϕnode

j (r)dA,

fij =
∫

Ω

ϕnode
i (r)ϕelem

j (r)dΩ.

Equation (10) expresses the relationship between the dis-
tribution of the photon flux density and the distribution
of the source power density. However, for the photon flux
density, the data we are interested in are on the body sur-
face, which makes us rearrange Eq. (10) as[

M11M12

M21M22

] [
Φsur

Φin

]
=

[
F1

F2

]
S, (11)

where Φsur is the photon flux density on surface and Φin

is the internal photon flux density of the phantom. The
sub-matrices, M11, M12, M21, and M22 of M , and F1 and
F2 of F , are arranged in consistence with Φsur and Φin.

Equation (11) can be evaluated as

Φsur(S) = (M11 − M12M
−1
22 M21)−1

(F1 − M12M
−1
22 F2)S. (12)

Then we can get the photon flux density on the surface
from the source distribution directly through Eq. (12).

In the moment searching algorithm, the moment of the

flux about the plane is defined as the product of the pho-
ton flux density and the corresponding coordinate value.
For example, the moment of the flux about the yoz plane
is[11]

Myoz(Φ) =
Nsn∑
i=1

Φixi, (13)

where Nsn is the number of the surface node; Φi is the
node value of the ith node on the surface and xi is its x
coordinate value. Mxoz and Mxoy are defined similarly.

According to the theory on finding the barycenter in
theoretical mechanics, we can get a position as

px(Φ) = Myoz(Φ)/
Nsn∑
i=1

Φi

py(Φ) = Mxoz(Φ)/
Nsn∑
i=1

Φi

pz(Φ) = Mxoy(Φ)/
Nsn∑
i=1

Φi

. (14)

To search for the source, we give an initial guess of the
source’s position and the element enclosing the position
is considered as the source. In other words, the elements
of the matrix S in Eq. (12) are zero except for the one
which represents the source. At the same time, the opti-
mum source power density is obtained through

min(‖Φsur(S) − Φm‖), (15)

where Φm is the photon flux density measured on the
body surface. Then we can give a feedback to the source’s
position through Eq. (14). Actually, if the guessed
source’s position deviates from the real source in a direc-
tion, the value of ‖Φsur − Φm‖ in this direction is larger
than the other directions, according to which the guessed
position is adjusted. This algorithm makes the position
information used fully. The next position is obtained as{

xi+1 = xi + λ(xm − xi)
yi+1 = yi + λ(ym − yi)
zi+1 = zi + λ(zm − zi)

, (16)

{
xm = px(max(Φsur − Φm) − (Φsur − Φm))
ym = py(max(Φsur − Φm) − (Φsur − Φm))
zm = pz(max(Φsur − Φm) − (Φsur − Φm))

, (17)

where (xi, yi, zi) is the guessed source position in the ith
iteration, 0 < λ < 1.

Equation (16) makes the source’s position move to-
ward the real one. This process is done again and again
until the guessed position converges to a certain place.
Compared with the theoretical mechanics, the surface
point is corresponding to the particle. As the photon
flux densities in all directions are equally important, we
must configurate the phantom’s surface points so that
the surface points are symmetric about the x, y, and z
axes.

We have simulated the algorithm with a cylinder phan-
tom of 30-mm height and 10-mm radius as shown in Fig.
1. Its optical parameters are shown in Table 1[5]. In
the experiment, the initial position of the source is set
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Fig. 1. Phantom used in the simulation composed of muscle,
lungs, heart, bone, liver, and source.

Table 1. Optical Parameters of
the Phantom in Fig. 1

Muscle Lung Heart Bone Liver

µa (mm−1) 0.010 0.350 0.200 0.002 0.035

µs (mm−1) 4.0 23.0 16.0 20.0 6.0

g 0.90 0.94 0.85 0.90 0.90

Fig. 2. Simulation results of (a) front view, (b) left view, (c)
back view, and (d) right view. The dark elements represent
the reconstructed sources.

Fig. 3. Convergence curve of distance from the reconstructed
source position to the real source on y-axis with the iteration
step number on x-axis.

at (px(Φm), py(Φm), pz(Φm)) and the simulation results
are shown in Fig. 2, from which we can see that the
reconstructed source’s position coincides with the real
one. Figure 3 shows the convergence curve of the dis-
tance between real source and reconstructed source with

the iteration number where the position converges to the
point (2.276,5.577,−0.004), 0.61 mm away from the cen-
ter of the real source’s position (2.500,5.000,0.000) after
the 80th step. It demonstrates the accuracy of the al-
gorithm in position searching when compared with the
adaptive finite element algorithm which converges to a
point 0.93 mm away from the real source[5]. Accord-
ing to the definition of power density, the total power
of 1.12 nW is obtained compared with the real source’s
power of 4.19 nW. From the results, we can see that the
moment searching algorithm can obtain the position in-
formation effectively. But the power information is not
good enough and needs further improvement.

In conclusion, this proposed algorithm fuses the FEM
with the moment concept in theoretical mechanics. En-
lighted by the algorithm in finding the barycenter, the
position information of photon flux density is fully used.
The simulation results show the effectiveness of the al-
gorithm. However, the simulation composed of two or
more sources is also needed and the algorithm should be
further modified.
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