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Application of multi-phase particle swarm optimization

technique to retrieve the particle size distribution
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The multi-phase particle swarm optimization (MPPSO) technique is applied to retrieve the particle size
distribution (PSD) under dependent model. Based on the Mie theory and the Lambert-Beer theory, three
PSDs, i.e., the Rosin-Rammer (R-R) distribution, the normal distribution, and the logarithmic normal
distribution, are estimated by MPPSO algorithm. The results confirm the potential of the proposed
approach and show its effectiveness. It may provide a new technique to improve the accuracy and reliability
of the PSD inverse calculation.
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Particle size distribution (PSD) plays an important role
in the field of production processes, product quality, and
energy consumption, so it is highly required to on-line
monitor the granularity to provide real-time measure-
ments of both size distribution and particle concentra-
tion in the industrial fields. The retrieval of PSD with
non-intrusive optical measurement has shown broad de-
velopment space and huge potential gradually. Based
on the absorption and scattering characteristics of the
particle cloud, the PSD measurement by optical tech-
niques has a lot of advantages, such as high measure-
ment speed, well-repeated implement, wide measurement
size range, easy automatization, etc.. The development
trend of PSD measurement is to improve the measure-
ment accuracy and modify the inverse algorithm. Nowa-
days, various optical techniques have been used to de-
termine particle size, such as diffraction light scattering
method, total light scattering method, angle light scat-
tering method, dynamic light scattering method, and
transmittance method[1]. Among them, the diffraction
light scattering method and the total light transmittance
method are the two most common experimental tech-
niques in practice. However, in many cases of practical
interest, the assumed PSD by these methods is neces-
sarily inaccurate because of limitations imposed by the
imperfect signal-to-noise ratio (SNR) of the raw data,
coupled with the “ill-conditioned” nature of the deconvo-
lution algorithms which need to calculate the first Fred-
holm integral equation. Theoretically speaking, the PSD
inverse problem is actually a first Fredholm integral equa-
tion problem which is typically ill-posed and difficult
to be solved directly. Thus, many random search in-
telligent algorithms have been introduced to inverse the
PSD problems, such as genetic algorithm (GA), simu-
lated annealing (SA), evolution strategies (ES), and ar-
tificial neural networks (ANN)[2−4]. Compared with the
traditional gradient methods, the intelligent optimiza-
tions have some outstanding characteristics. Firstly, both
linear and nonlinear or ill and non-ill inverse problems
could be solved. Secondly, the inverse problem with com-
plicated direct operator or without analytic expression
could be solved. Thirdly, only the functional value is

needed for the objective function, without explicit ex-
pressions. Fourthly, since the evaluation is carried out
by the fitness value, the gradient information and the
prior information about the unknown function are not
needed. Reference [3] applied the particle swarm opti-
mization (PSO) algorithm to solve the inverse problem
for determining the PSD from a light transmittance tech-
nique, and obtained some reasonable results. In this pa-
per, we apply the multi-phase particle swarm optimiza-
tion (MPPSO) algorithm, which can guarantee the con-
vergence of the global optimization solution with high
accuracy, to the inverse problem of particle distribution
under dependent model.

Among the optical measurement methods, the light
transmittance technique is simple in principle and con-
venient for the optical arrangement and is a more use-
ful diagnostic tool for spatially and temporally resolved
measurement of PSD in a wide range of applications. The
theoretical details of the transmittance technique are dis-
cussed in the following.

When a collimated laser beam passes through a suspen-
sion of particles, the transmitted light will be attenuated
due to the absorbing and scattering of the particles. Ac-
cording to the Lambert-Beer theory, if the suspensions of
particle cloud are polydisperse spheres and the multiple
scattering and interaction effects can be neglected, the
transmitted light intensity I may be expressed as

I = I0 exp

[

−π

4

∫ D2

D1

N0f(D)D2LQex(x, m)dD

]

, (1)

where I0 is the incident light intensity, L is the mean
distance through which the laser passes, N0f(D) is the
number concentration of the particles with diameter D
which is the PSD function to be measured, N0 is the to-
tal number density of the particles, Qex(x, m) is the ex-
tinction efficiency factor which is dependent on the size
parameter x = πλ/D and the complex refractive index
m and can be calculated by the Mie scattering theory[5].

For a particle cloud with fixed PSD function, assuming
the amount of particles with diameter Di is Ni, if there
are several incident laser light beams with different wave-
length λj (j = 1, 2, · · · , k), the following form equation
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may be obtained from Eq. (1):

ln [I(λj)/I0(λj)] = −π

4
L

M
∑

i=1

D2
i NiQex(xi,j , m), (2)

where M is the amount of Di. When solving Eq. (2)
practically, the range of diameters [Dmin, Dmax] can be
divided into M intervals [Di, Di+1] (i = 1, 2, · · · , M −1).
Each Di in Eq. (2) could take the mean value or the
maximum value of the ith interval, and Eq. (2) can be
transformed into a group of linear equations. When the
ratio of I(λj) to I0(λj) is measured, the PSD function
f(D) (fi = Ni/N0) could be obtained by solving the lin-
ear equations. However, Eq. (2) is seriously ill-posed and
needs the inverse model, which is usually divided into
two main categories, the dependent model and the in-
dependent one. Under the dependent model, a distribu-
tion function should be assumed a priori, such as nor-
mal distribution, logarithmic normal distribution, and
the Rosin-Rammer (R-R) distribution (actually most of
practical particulate systems often conform to some two-
parameter size distribution functions). Under the inde-
pendent model, by measuring the ratio of I0(λj) to I(λj),
the PSD function [f1, f2, · · · , fM ] could be obtained by
solving the system of linear equations. In this paper, the
MPPSO algorithm is used to retrieve different size distri-
butions under the dependent model. The insight is put
on the PSD inversion by using the MPPSO algorithm.

The PSO algorithm introduced in 1995[6], has been
studied extensively by many researchers in recent years.
It combines the concept of survival-of-the-fittest among
string patterns with a regulated yet randomized infor-
mation exchange. Generally, PSO is characterized to
be simple in concept, easy to implement, and compu-
tationally efficient. Unlike other heuristic techniques,
PSO has a flexible and well-balanced mechanism to en-
hance the global and local exploration abilities. It re-
quires only primitive mathematical operators and is com-
putationally inexpensive in terms of both memory re-
quirements and CPU (central processing unit) time. An-
other feature of PSO is the use of the objective func-
tion instead of using derivatives (sensitivity analysis) or
other auxiliary knowledge. During the last decade, as
an important efficient concurrent optimization tool, the
PSO algorithm has been successfully used in system iden-
tification, neural network training, function optimiza-
tion, mode classification, fuzzy control, electrical equip-
ment power feedback control, signal processing, robot
technique, etc.[6−8].

However, the standard PSO algorithm has two weak-
nesses. 1) In order to avoid the local optima and extend
the search range, it wastes a lot of calculation on the
search of bad fitness. 2) The particle moves along to-
wards a fixed direction until the direction changes, so it
brings on the possibility to convergence to the local op-
tima of adaptive values’ difference. We introduce the
MPPSO, which overcomes the deficiencies of the ba-
sic PSO algorithm. The MPPSO introduces the idea
of ‘grouping’ and ‘phase’, so it increases population di-
versity and explores the search space more efficiently.
Three main changes in the MPPSO algorithm are: 1) di-
viding particles into multiple groups, thereby increasing
the diversity and exploration of the space; 2) introducing

different phases, among which the direction of particle
movement changes; 3) moving only to positions that will
increase the fitness.

The fundamental parameters of the MPPSO are:
phase amount Np, phase changing frequency fp, group
coefficients Cv, Cx, and Cg, sub-length dimension sl, and
velocity reinitializing frequency Vc. The details of these
parameters are available in Ref. [9]. For each generation
of particle i for some phase, the transient velocity and
position change according to

Vi(t + 1) = Cv ·Vi(t) + Cx ·Xi(t) + Cg · Pg(t), (3)

Xi(t + 1) = Xi(t) + Vi(t + 1), (4)

where Vi(t) is the present velocity, Pg(t) is the global
best position, and Xi(t) is the present position (or solu-
tion). The parameters’ values are first determined and
the first swarm is initialized. The swarm iterations are
then executed until the termination conditions are met.
During each iteration, the first step is to check the Vc

variable to see if it is time to reinitialize the velocity. Af-
ter that, the parameter sl is chosen, the current phase
is set, and the particles are divided into groups. When
the group is determined, the coefficients are determined.
Using these, the new tentative positions for those dimen-
sions encountered in the calculation are calculated and
stored in the temporary memory. If the tentative po-
sition updates improve the fitness of the particle, the
particle will accept the updates and move to the new po-
sition. Otherwise, computation of tentative updates is
performed for the next group of sl dimensions. In the
MPPSO iteration in this paper, the iteration stop crite-
rion is the fitness function value F less than 1 × 10−10

or the iteration number larger than 1000. With the
comparison of the MPPSO and PSO by using the three
classic test function[9], the potential of MPPSO and its
effectiveness and superiority over the standard PSO al-
gorithm can be confirmed.

Using the MPPSO algorithm, this paper inverses the
particle swarm diameter distribution for the R-R distri-
bution, the normal distribution, and the logarithmic nor-
mal distribution. The corresponding distribution func-
tions are defined as follows:

fR−R(D) =
σ

D̄
(
D

D̄
)σ−1 exp

[

−(
D

D̄
)σ

]

, (5)

fNormal(D) =
1√

2π · σ
exp

[

−1

2
(
D − D

σ
)2

]

, (6)

fLog−Normal(D) =
1√

2π · D lnσ
exp

[

−1

2
(
lnD − lnD

lnσ
)2

]

.

(7)

In Eq. (5), D̄ is the characteristic diameter parameter,
σ is the dispersion ratio. In Eqs. (6) and (7), (D̄, σ)
represent the distribution parameters. The complex re-
fraction index used in this paper refers to the practical
situation. For instance, the real part and imaginary part
of coal ash particle’s typical complex refractive index are
n ∈ [1.18, 1.92] and k ∈ [0.01, 1.13][10], respectively, and
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the complex refractive index is selected as 1.51 + 0.03i,
which is assumed to be independent of the wavelength.
If not so, it is just needed to use the complex refraction
index under each wavelength without increasing the cal-
culation efforts. The incident wavelength is set as three
wavelengths λ = 0.4, 0.6, 0.8 µm or six wavelengths
λ = 0.4, 0.6, 0.8, 1.2, 1.6, 2.0 µm. For the R-R dis-
tribution, the true value of (D̄, σ) is set as (5, 2); for the
normal distribution, is set as (5, 2); for the logarithmic
normal distribution, is set as (5, 1.5).

The inverse PSD problem is solved through the mini-
mization of a fitness function, which is expressed by the
sum of square residuals between calculated and measured
transmittance ratio as follows:

F =

k
∑

j=1

{

[I(λj)/I0(λj)]e − [I(λj)/I0(λj)]m
[I(λj)/I0(λj)]m

}2

, (8)

where the subscript ‘m’ represents the measured value,
‘e’ represents the estimated value of every iteration,
j = 1, · · · , k and k means the amount of incident laser
wavelengths. The main parameters of the three diameter
distribution function retrieved by the MPPSO are listed
in Table 1.

Figures 1 − 3 show the PSD results of the MPPSO
inverse calculation. Tables 2 and 3 show the statistic
parameters of the inverse results. The parameters in the
tables are defined as follows.

1) The span of particle swarm’s diameter distribution

Table 1. Parameters of MPPSO Algorithm for
Different PSD Functions

Parameter R-R Normal Log-Normal

n 50 50 50

D̄ 1 − 10 1 − 30 0.01 − 10

σ 1 − 30 0.1 − 10 0.01 − 10

Vmax 5 5 3

Vc 10 10 10

fp 50 50 50

n: the particle swarm size.

Fig. 1. Inverse results of R-R distribution D̄ = 5, σ = 2
with different measurement errors for (a) 3 and (b) 6 incident
wavelengths.

Fig. 2. Inverse results of normal distribution D̄ = 5, σ = 2
with different measurement errors for (a) 3 and (b) 6 incident
wavelengths.

Fig. 3. Inverse results of logarithmic normal distribution
D̄ = 5, σ = 1.5 with different measurement errors for (a)
3 and (b) 6 incident wavelengths.

is expressed as

SPAN =
D(W, 0.9) − D(W, 0.1)

D(W, 0.5)
, (9)

where D(W, 0.1) is the weight equivalent radius and the
accumulated weight percent of the particles smaller than
it occupies 10% of the total weight of particle system;
D(W, 0.5) is the weight intermediate radius and the ac-
cumulated weight percent of the particles smaller than
it occupies 50% of the total weight of particle swarm.
D(W, 0.9) is defined similarly.

2) The absolute deviation of PSD ε means the devia-
tion between the probability distribution obtained from
the inverse calculation and the true PSD, which is defined
as

ε =
1

2

M
∑

i=1

|fe(i) − ft(i)|, (10)
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Table 2. Inverse Results of MPPSO for Different Distributions with Three Incident Wavelengths

Parameter
Error = 0% Error = 5% Error = 10%

F1 F2 F3 F1 F2 F3 F1 F2 F3

D̄ 5.000 5.001 5.000 5.137 5.138 5.021 5.238 5.215 5.100

RD̄ (%) 0.000 0.020 0.000 2.740 2.760 0.420 4.760 4.300 2.000

σ 2.001 1.998 1.499 2.010 2.024 1.538 2.042 2.190 1.555

Rσ (%) 0.050 0.100 0.067 0.500 1.200 2.533 2.100 9.500 3.667

SPAN 1.435 1.019 1.085 1.427 1.005 1.161 1.403 1.068 1.192

ε (%) 0.046 0.097 0.159 4.004 5.488 5.833 7.087 11.190 8.712

F1, F2, and F3 represent the R-R, normal and logarithmic normal distributions, respectively.

Table 3. Inverse Results of MPPSO for Different Distributions with Six Incident Wavelengths

Parameter
Error = 0% Error = 5% Error = 10%

F1 F2 F3 F1 F2 F3 F1 F2 F3

D̄ 5.000 5.000 5.000 5.101 5.150 5.099 5.170 5.285 5.203

RD̄ (%) 0.000 0.000 0.000 2.020 3.00 1.980 3.400 5.700 4.060

σ 2.000 2.000 1.500 2.003 1.990 1.508 2.015 2.016 1.502

Rσ (%) 0.000 0.000 0.000 0.150 0.500 0.533 0.750 0.800 0.133

SPAN 1.435 1.020 1.087 1.431 0.987 1.103 1.423 0.974 1.091

ε (%) 0.000 0.000 0.000 2.947 5.873 3.978 4.969 11.150 7.831

where ft represents the true size distribution and fe rep-
resents the estimated size distribution function resulting
from the inverse calculation.

3) The relative deviations of eigenvalues RD̄ and Rσ.
They are the deviations between the parameters obtained
from the inverse calculation and the true values under the
dependent model. The expressions are

RD̄ =
D̄c − D̄t

D̄t
× 100%, (11)

Rσ =
σc − σt

σt
× 100%. (12)

The final consideration is the effect of measurement
errors on the accuracy of estimation. In the practical ex-
periment, the measurement error is unavoidable. Thus,
the relative error is set as Error = 0, 5% and 10%, respec-
tively. Tables 2 and 3 show that if there is no error intro-
duced, the PSD function can be retrieved accurately by
MPPSO algorithm. When the measurement error is 0%,
5%, and 10%, respectively, the inverse results of MPPSO
algorithm are shown in Figs. 1 − 3 and Tables 2 and
3. Obviously, by increasing the relative error from 0%
to 10%, the accuracy of the estimation decreases. As
shown in Figs. 1 − 3, the retrieved results with six inci-
dent wavelengths are more accurate than that with three
ones. For all the three PSD distributions, the estimated
error is less than the measurement error. Usually in the
laser extinction experiment, the total error caused by the
measurement is less than 10%, so the MPPSO algorithm
is suitable to retrieve the PSD in the practical industry
processes.

In Conclusion, based on the Mie theory and Lambert-
Beer theory, the MPPSO algorithm is proposed to deter-
mine the PSD under dependent model. Numerical simu-
lation results can lead to the following conclusions. The
PSD could be inversed accurately with the MPPSO al-
gorithm under dependent model. The present MPPSO

algorithm is robust and can obtain the satisfying esti-
mation of radiation parameters even in the case of 10%
measurement error. It does not require the PSD inverse
problems to have a strict mathematical analytic model,
and requires only primitive mathematical operators and
is computationally inexpensive in terms of both memory
requirements and CPU time, especially suitable to the
in-situ measurement of PSD.
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