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Quantitative measurement of displacement and strain

by the numerical moiré method
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The numerical moiré method with sensitivity as high as 0.03 nm has been presented. A quantitative
displacement and strain analysis program has been proposed by using this method. It is applied to an
edge dislocation and a stacking fault in aluminum. The measured strain of edge dislocation is compared
with theoretical prediction given by Peierls-Nabarro dislocation model. The displacement of stacking fault
is also obtained.
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Moiré method was introduced by Weller et al.
[1] in 1948

and has been improved by many researchers. The classi-
cal moiré method, referred to as geometric or mechanical
moiré method, has been widely used in experimental
stress analysis. It is a full-field optical method used to
measure in-plane deformation. The measurement sensi-
tivity for displacement using the moiré method is decided
upon by the pitch of the specimen grid. The grid fab-
rication techniques employed for the geometrical coarse
moiré method have been well developed. Since the 1980s,
holographic techniques have been used to produce laser
moiré interferometry gratings. The displacement sensi-
tivity of this method is about 300 nm[2]. Moiré interfer-
ometry has had a wider application and development[3].
The three-dimensional (3D) displacement can also be
measured[4]. The electron moiré method was developed
by Kishimoto et al. in 1991[5], and then advocated
by Dally et al.

[6]. The displacement sensitivity of this
method is about 100 nm. With the development of nan-
otechnology, transmission electronic microscopy (TEM)
has been widely used for analysis and measurement in
mechanics and materials science. Moiré fringes in TEM
image were first used by Menter[7] to identify a dislo-
cation. Later, the moiré pattern was thought of as a
magnified view of the structure of materials. Such pat-
terns can be used to locate and give information about
the dislocation if it is associated with a terminating lat-
tice plane in one material, but we do not actually see the
dislocation. In TEM, the moiré fringes can be explained
by double diffraction corresponding to interference be-
tween a pair of electronic beams, g1 and g2

[8]. Dai et

al.
[9,10] proposed a nano-moiré method with the TEM

image. In their experiment, a crystal lattice was utilized
as a specimen grating, while a prepared unidirectional
geometric grating was used as reference grating. These
two gratings interfered to generate a nano-moiré fringe.
Dislocation of Peierls type and the deformation field
could then be detected. The displacement sensitivity of
this method can reach 1 nm.

In this paper, we present a nano-scale measurement
method, numerical moiré (NM) method, whose sensi-
tivity can reach 0.03 nm. The method we use is an

extension of a technique firstly developed in optical
interferometry[11], and later utilized for the study of
defects[12,13]. We propose a quantitative analysis pro-
gram and apply the program to an edge dislocation and
a stacking fault.

An image of the atomic lattice is obtained via high-
resolution transmission electron microscopy (HRTEM),
and lattice fringes are created by the interference of
diffracted beams with the transmitted beam. All the in-
formation contained in a HRTEM image can be obtained
by analyzing these few components of the image inten-
sity. The lattice fringes seen in the image are related to
the atomic planes in the specimen. Figure 1 shows a typ-
ical image with its decomposition into different lattice
fringes of silicon. The crossing of the different fringes pro-
duces the dot-like contrast corresponding to the atomic
columns viewed in [111] projection. The displacement
and strain can be obtained by the measurement of these
atomic column positions. An image of a perfect crystal

Fig. 1. Lattice fringe images. (a) Typical HRTEM image
of the atomic lattice in [111] projection of silicon; (b) Fourier
transform of HRTEM image; (c) individual lattice images cor-
responding to the planes (202̄), (022̄), and (2̄20) respectively.
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can be described as a Fourier series:

I(r) =
∑

g

Age
2πig·r, (1)

where I(r) is the intensity in the image at position r, Ag

are the Fourier coefficients, g represents the periodici-
ties corresponding to the Bragg reflections and has the
following relationship with the lattices fringe spacing d:

d =
1

|g|
. (2)

To describe the variations of contrast and fringe position
in the image, we allow the Fourier components, Ag, to
become a function of position r:

I(r) =
∑

g

Ag(r)e
2πig·r. (3)

The image of a particular set of lattice fringes Ig(r) is
therefore given by

Ig(r) = Ag(r)e
2πig·r. (4)

Let us assume that there is a displacement u(r),

r → r − u(r), (5)

then Eq. (4) becomes

I ′g(r) = Ag(r)e
2πig·{r−u(r)}, (6)

where the amplitude, Ag(r), describes the local contrast
of the fringes. 2πg · {r− u(r)} is a geometric phase and
describes the position of the fringes. Introducing a mag-
nification M and calculating a new phase

P ′
g(r) = 2π

g · r

M
− 2πg · u(r), (7)

the NM can be attained by calculating the cosine of the
resulting phase,

Imoiré
g (r) = cos{2π

g

M
· r − 2πg · u(r)}. (8)

This is equivalent to superimposing a perfect lattice with
a reciprocal lattice vector smaller than the average lat-
tice by a factor of 1− 1

M
. The NM pattern acts as a lens

which magnifies not only the lattice spacing (by a fac-
tor of M) but also the distortions and rotations (by the
same factor M). The method produces a map of the local
fringe contrast and the displacements of the lattice with
respect to a perfect reference lattice. The displacement,
u(r), in the direction of the reciprocal lattice vector, g,
will therefore be given by

ug(r) =
r − r0

M
. (9)

By combining the information from two sets of lattice
fringes, the in-plane displacement field can be calculated
(provided that the reciprocal lattice vectors, ug1 and ug2

are non-colinear). The strain can be calculated by the
measurement of the spacing between moiré fringes. As-
suming that the spacing of undistorted lattice is D and

the spacing of the distorted lattice is D′, then the strain
εg(r) in the direction of the reciprocal lattice vector will
be given by

εg =
D′ − D

D
. (10)

By combining the information from two sets of lattice
fringes, the in-plane strain field can be calculated.

A verification of the technique can be achieved with
the following example. Figure 2(a) is a calculation for a
cosine lattice fringe with a spacing of 2 nm. There is a
displacement of 0.2 nm at the areas marked by the ar-
rows. At first, the Fourier transform image is calculated,
as shown in Fig. 2(b). Then the right diffraction spot
is selected for filtering by a Gaussian mask. The mag-
nification is 5. This can be carried out by changing the
reference to 0.8g followed by an inverse Fourier transform
that produces a complex image containing the desired
information. The geometric phase can be obtained by
calculating the arctangent of the imaginary part divided
by the real part, point by point in the image. At last,
the NM can be obtained by calculating the cosine of the
resulting phase image, Fig. 2(c). According to Eq. (9),
the local displacement u(r) can be obtained by measur-
ing the distance between the peaks of distorted fringes
and undistorted fringes, as shown in Fig. 2(d). There is
a displacement of 0.2 nm in the range of 10−20 nm. Ac-
cording to Eq. (10), the local strain ε(r) can be obtained
by measuring the spacing between the peaks of moiré
fringes, as shown in Fig. 2(e). There are a strain of −0.1
near 10 nm and a strain of +0.1 near 20 nm. The reliable
measurement result has verified the NM technique.

The TEM experimental material was aluminum whose
Poisson’s ratio was ν = 0.347 and lattice constant d111 =
0.2338 nm. The TEM sample was prepared for cross sec-
tional imaging along the [1̄10] direction using standard
techniques involving mechanical grinding followed by ion
milling. A HRTEM experiment was performed on the

Fig. 2. Verification of the technique. (a) Calculated fringe
image with a displacement of 0.2 nm; (b) Fourier transform
of fringe image; (c) 5× NM image; (d) displacement measure-
ment result; (e) strain measurement result.
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JEM-2010 operating at 200 kV. Images were recorded
on a 1024 × 1024 pixels slow scan charge-coupled device
(CCD) camera (Gatan 794), and the image analysis was
carried out using a software package developed with the
Gatan Digital Micrograph environment.

A HRTEM image of an edge dislocation in aluminum
is shown in Fig. 3(a). The dislocation core is marked
by an arrow. The (111) spot in the Fourier trans-
form of the image (Fig. 3(b)) was chosen for analysis.
A mask was placed around the spot to isolate it, and
the NM image was calculated (Fig. 3(c)). The mag-
nification in this image is 5. The spacing was nearly
constant in the area away from dislocation core, which
was used as the reference. Taking the x axis parallel
to the g111 orientation and the y axis in the perpendic-
ular direction, the Cartesian coordinate system can be
established. The resulting fringe patterns can then be
binarized (Fig. 3(d)). The strain component εxx can be
calculated by measuring the spacing between the fringes.
The size of Fig. 3(a) is 456 × 205 pixels. The size of one
pixel is 0.0352 × 0.0352 (nm). So the error of the dis-
placement measurement is one pixel (0.0352 nm). Con-
sidering that the space between two binarized fringes is
(0.2338 × 5/2 =)0.5845 nm, the error of the strain mea-
surement is 0.0352/0.5845 = 0.06.

The strain distribution from the experimental results
is then compared with that from the Peierls-Nabarro dis-
location model. According to the Peierls-Nabarro dislo-
cation model, the strain of an edge dislocation along the
x direction can be written as

εxx = −
d

π

(1 − ν)y

4(1 − ν)2x2 + y2
, (11)

where x and y are the Cartesian coordinates, respec-
tively, centered on the dislocation core position, d is the

Fig. 3. NM analysis of edge dislocation in aluminum. (a)
HRTEM image; (b) Fourier transform of HRTEM image; (c)
5× NM image; (d) binarized moiré image.

Fig. 4. Comparison of strain εxx between the experimental
result and theoretical prediction.

Fig. 5. NM analysis of stacking fault in aluminum. (a)
HRTEM image; (b) Fourier transform of HRTEM image; (c)
5× NM image; (d) binarized moiré image.

Fig. 6. Displacement near the stacking fault.

lattice constant along x direction, and ν is Poisson’s ra-
tio. The strain results of the experiment and theoretical
prediction are shown in Fig. 4. A good agreement can
be found except for the region with a distance less than
1 nm from the dislocation core. Within the 1-nm range,
the measurement strain is somewhat higher than the the-
oretical prediction. The strain at the dislocation core can
reach 0.47 ± 0.06.

A HRTEM image of a stacking fault in aluminum is
shown in Fig. 5(a). The (111) spot in the Fourier trans-
form of the image (Fig. 5(b)) was chosen for analysis. A
mask was placed around the spot to isolate it and the
NM image was calculated (Fig. 5(c)). The magnification
is 5. The spacing was nearly constant on the bottom
of image, which was used as the reference. The result-
ing fringe patterns can then be binarized (Fig. 5(d)). The
displacement u along the section aa′ in Fig. 5(d) is shown
in Fig. 6. The maximum is 0.084 ± 0.007 nm.

In this paper, the theory of NM is presented in detail.
The technique is verified by a set of fringes of known
distortion. This technique has been applied to an edge
dislocation and a stacking fault in aluminum. The dis-
placement sensitivity of NM is 0.0352 nm in our exper-
iment, corresponding to the 1000000× magnification of
HRTEM. The displacement sensitivity can be increased
by increasing the magnification of the HRTEM. Using
CCD with higher resolution, e.g. 2048× 2048 pixels, the
displacement sensitivity will be increased to 0.0176 nm.
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