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Sub-wavelength atom localization in
double-dark resonant systems
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We propose two schemes of atom localization based on the interference of double-dark resonances in a tripod
and a Λ-type four-level system. It is demonstrated that the localization is significantly improved owing to
the interference of double-dark resonances. In the tripod scheme, the localization can be manipulated by
the parameters of an additional control field. Via adjusting the Rabi frequency of the field, one can double
the probability of detecting the atom within subwavelength domain. By decreasing the detuning of the
field, higher spatial resolution can be achieved. In the Λ-type four-level system, via adjusting the probe
field detuning, we can not only make the atom localized at the nodes of the standing-wave field with high
precision, but also increase the detecting probability of the atom at a particular position by a factor of 2.
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In recent years, precision position measurement of an
atom passing through a standing-wave field has attracted
considerable attention. Many atom localization schemes
based on atomic coherence and quantum interference ef-
fects have been proposed. Zubairy and co-workers pro-
posed several schemes using the resonance fluorescence
from a two-level system[1], the measurement of sponta-
neous emission in a multi-level system[2−6] or the mea-
surement of the probe absorption[7,8]. Paspalakis et
al.[9,10] put forward a scheme based on the formation of
the dark state in a three-level Λ-type atom. Agarwal et
al.[11] proposed a scheme based on the phenomena of co-
herent population trapping in a Λ-type atom.

On the other hand, double-dark resonances have been
demonstrated in a variety of four-level systems[12−17],
where the probe absorption spectrum is characterized by
two electromagnetically induced transparency (EIT) win-
dows, separated by a sharp absorption peak[18] resulting
from interaction of double-dark resonances. In this pa-
per, we present two localization schemes utilizing the in-
teracting double-dark resonances in a tripod and a Λ-type
four-level atomic system. It is shown that the property
of atom localization can be significantly improved owing
to the interference of double-dark resonances.

In the first place, we consider atom localization in a
tripod system. The atomic system under consideration
is shown in. Fig. 1. The atom is in a tripod configu-
ration, with a lower level |0〉, two metastable levels |1〉
and |2〉, and a single upper level |3〉, which decays out of
the system. The atom, moving in the z direction, passes
through the classical standing-wave field aligned the x
axis. The transition |3〉 ↔ |0〉 is coupled by a weak probe
field with Rabi frequency Ω0. The transition |3〉 ↔ |1〉 is
coupled by a classical standing-wave field with position
dependent Rabi frequency Ω1(x) = Ω1 sin(kx). Here Ω1

is the constant part of Ω1(x) and k = 2π/λ is the wave
number of the classical standing-wave field. The transi-
tion |3〉 ↔ |2〉 is coupled by an additional control field
with Rabi frequency Ω2.

The interaction Hamiltonian of this system, in the

dipole and rotating-wave approximations, is given by

H = Ω0 exp(−iδ0t)|3〉〈0| + Ω1(x) exp(−iδ1t)|3〉〈1|
+Ω2 exp(−iδ2t)|3〉〈2|, (1)

where δn represents the detuning of the laser field with
the |n〉 ↔ |3〉 transition.

The atom-field state-vector |Ψ(t)〉 can be written as

|Ψ(t)〉 =
∫

dxf(x)|x〉[a0(x, t)|0〉
+a1(x, t)|1〉a2(x, t)|2〉a3(x, t)|3〉], (2)

where an(x, t) (n = 1, 2, 3) represents the time and posi-
tion dependent probability amplitude for the atom to be
in level |n〉, f(x) and is the center-of-mass wave function
of the atom.

The conditional position probability distribution, i.e.,
the probability of finding the atom at position x in the
standing-wave field provided that the atom is found in
its internal state |3〉, is

P (x, t|3〉) = |N |2|f(x)|2|a3(x, t)|2, (3)

here N is a normalization factor. The dependence of a3

on x makes it possible to obtain information about the x

Fig. 1. Schematic diagram of the system under consideration.
The atom interacts with a standing-wave field that couples
the |3〉 ↔ |1〉 transition, a probe laser field that couples the
|3〉 ↔ |0〉 transition, and a control laser field that couples the
|3〉 ↔ |2〉 transition.
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position of the atom as it passes through the standing-
wave field via measuring the population in upper state.

Making use of the assumption that the atom is initially
in its ground state |0〉, and that the probe field is very
weak, we can determine a3(x, t) analytically by means of
time-dependent perturbation theory. Then we obtain the
conditional position probability distribution

P (x, t → ∞|3〉) =

|N |2|f(x)|2 Ω2
0(

δ0 + Ω2
2

δ2−δ0
+ +Ω1(x)2

δ0−δ1

)2

+ γ2

4

= |N |2|f(x)|2F (x), (4)

where γ is the decay outside the system, and F (x) is
the filter function. As f(x) is assumed to be nearly con-
stant over many wavelengths of the standing-wave field,
the conditional position probability distribution is deter-
mined by the filter function.

The filter function in Eq. (4) is complex, therefore,
we have to limit ourselves to specific cases where the
form of the filter function is simplified. Paspalakis et
al. have demonstrated that the absorption spectrum of a
tripod system may be symmetric or asymmetric and its
shape depends critically on the system parameters[16,17].
Goren et al.[18] symmetrically detuned two pumps with
equal Rabi frequency, and found that the central peak
appears exactly at the line center. Inspired by these
results, we restrict our discussion under the limitation
that δ1 = −δ2. Moreover, we apply an exactly resonant
probe field. Upon substituting δ1 = −δ2 and δ0 = 0 into
Eq. (4), we simplify the filter function as

F (x) =
4Ω2

0δ
2
2

4(Ω2
2 − Ω2

1 sin2(kx))2 + γ2
. (5)

It is easy to find that the maxima of the peaks are
located at

kx = ± arcsin
Ω2

Ω1
+ mπ, (6)

where m is an integer.
The full width at half of the maximum height of all the

peaks is given by

w =

∣∣∣∣∣arcsin

√
Ω2

2 + γδ2/2
Ω1

− arcsin

√
Ω2

2 − γδ2/2
Ω1

∣∣∣∣∣ . (7)

Equation (6) shows that the position of the localization
peak may be manipulated via changing Ω2. According
to Eq. (7), for given Ω1 and Ω2, the peak-position is
fixed, but the peak-width can still be narrowed by de-
creasing δ2. When δ2 is decreased exactly to be zero,
i.e., the two transparency windows coincide at δ0 = 0,
then perfect EIT occurs at δ0 = 0 instead of absorption.
In such a case, the atom localization cannot be realized.
This can also be seen from Eq. (5), F (x) ≡ 0 for δ2 = 0.
From the above analysis, we can see that the interacting
double-dark resonances provide us the opportunity to
control the localization results by the parameters of the
additional control field.

First of all, we consider the probability of finding the
atom within a wavelength domain of the standing-wave

field. Setting all parameters to be dimensionless, we plot
the filter function F (x) versus the normalized position kx
for two cases: Ω2 ∈ (0, Ω1) and Ω2 = Ω1 in Figs. 2 and
3, respectively. The dashed curve is a sine-squared func-
tion to illustrate the position-dependent Rabi frequency
of the standing-wave field. Evidently, subwavelength lo-
calization can be realized in such a system. In Fig. 2,
there are four peaks within a unit wavelength of the
standing-wave field. In other words, there are four differ-
ent probable positions of the atom in a unit wavelength
domain when the population in upper level is detected.
Thus, the probability of finding the atom at a particular
position is 1/4. In fact, from Eq. (6), we can find that
for Ω2 ∈ (0, Ω1), there are four probable peak-positions
within the interval [π, π]. Therefore, when Ω2 is adjusted
within the interval (0, Ω1), the probability of finding the
atom at a particular position is always 1/4. However,
when Ω2 = Ω1, as Fig. 3 shows, the number of peaks is
reduced to two, and the probability of finding the atom
at a particular position is 1/2. Therefore, when the Rabi
frequency of the control field is equal to the maximum
Rabi frequency of the standing-wave field, the probabil-
ity of detecting the atom within one wavelength domain
of the standing-wave field is doubled.

Now, we turn to the localization precision problem. In
Figs. 4 and 5, we still plot the filter function F (x) versus
normalized position kx for the two different cases: Ω2 ∈
(0, Ω1) and Ω2 = Ω1. When plotting Fig. 4 (or Fig. 5),
we use the same parameters as in Fig. 2 (or Fig. 3), but
with smaller detuning δ2 than in Fig. 2 (Fig. 3). Com-
paring Fig. 4 with Fig. 2, we can find that the position
and the number of peaks in Fig. 4 exactly correspond to

Fig. 2. Filter function F (x) as a function of kx when
Ω2 = 2.00. The dashed curve is a sine-squared function.
The parameters are δ0 = 0.00, δ2 = −δ1 = 1.50, Ω1 = 3.00,
and γ = 0.20. All parameters are measured in arbitrary units.

Fig. 3. Filter function F (x) as a function of kx when
Ω2 = 3.00. The parameters are the same as Fig. 2.
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Fig. 4. Filter function F (x) as a function of kx when
Ω2 = 2.00. The parameters are the same as Fig. 2, but
with δ2 = −δ1 = 0.15.

Fig. 5. Filter function F (x) as a function of kx when
Ω2 = 3.00. The parameters are the same as Fig. 3, but
with δ2 = −δ1 = 0.15.

Fig. 2, but the peaks in Fig. 4 are much narrower. This
shows that if only δ2 is decreased, the peaks can become
much narrower, namely, the precision of localization can
be greatly enhanced. At the same time, the number of
peaks does not change, i.e., the probability of finding the
atom within a unit wavelength domain of the standing-
wave field keeps unchanged. Similar conclusion can also
be drawn for the case Ω2 = Ω1 by comparing Fig. 5
with Fig. 3. Therefore, via decreasing δ2, the interact-
ing double-dark resonances lead to enhanced localization
precision with unchanged probability of finding the atom
within a unit wavelength domain. The fact is easy to
understand that decreasing δ2 leads to narrower peaks.
The decrease of the detuning δ2 actually shortens the dis-
tance between the two EIT points, and naturally makes
the width of the central absorption peak become nar-
rower, which agrees with that of Ref. [18].

In the second place, we consider atom localization in a
Λ-type four-level system.

The atomic system is show in Fig. 6. The transition
|a〉 ↔ |c〉 is coupled with a driving field aligned along the
x direction with Rabi frequency Ω = Ω0 sin(kx). A weak
probe field with Rabi frequency ε couples the transition
|a〉 ↔ |b〉. An additional coherent perturbation field with
Rabi frequency Ωc couples the transition |c〉 ↔ |d〉. The
application of the perturbation field leads to a splitting
of dark states and a “double-dark resonances” structure
appears[12].

Assuming that the atom is initially in state |b〉, and
that the probe field is very weak, then the conditional
position probability distribution, i.e., the probability of
finding the atom at position x in the standing-wave field

Fig. 6. Atomic system displaying double-dark resonances. γb,
γc and γd represent the spontaneous decay rates from the
upper level |a〉 to the three metastable states |b〉, |c〉 and |d〉.
A driving field Ω, a weak probe field ε and an additional
coherent perturbation field Ωc couple their corresponding
transitions.

provided that the atom is found in its internal state |a〉,
is given by

P (x, t → ∞|a〉)
= |N |2|f(x)|2ε2A2/

[
(B − ΔA)2 + γ2

abA
2
]
, (8)

here A = Ω2
c−(Δ0−Δ)(Δ0+Δc−Δ), B = Ω2(Δ0+Δc−

Δ), γab = (γb + γc + γd)/2, N and f(x) have the same
meanings as in the above section. Obviously, the condi-
tional position probability distribution is determined by
the filter function

F (x) = ε2A2/
[
(B − ΔA)2 + γ2

abA
2
]
. (9)

As can be seen from Eq. (9), the localization depends
not only on the parameters of standing-wave field and
additional coherent perturbation field, but also on the
probe field detuning Δ. Here we focus on the effects of
probe field detuning on atom localization.

It should be pointed out that for the case Δ0+Δc−Δ =
0, i.e., satisfying the three-photon resonance, the filter
function becomes

F (x) = ε2/γ2
ab. (10)

The filter function is a constant for fixed ε and γab,
and the atom cannot be localization. Therefore,
Δ0 + Δc − Δ 	= 0 is a fundamental condition for re-
alizing atom localization in such a scheme.

In Fig. 7, we present the filter function versus kx for
four different probe field detunings. The figure shows
that the probe field detuning has a significant effect not
only on the numbers of atom localization peaks, but also
on the degree of atom localization. On the one hand,
when Δ is small (Figs. 7(a) and (b)), there are three
peaks in the subwavelength domain, which lie at the
nodes of the standing-wave field. This means that the
detecting probability of the atom in the subwavelength
domain is 1/2. With a further increase of Δ, as Figs. 7(c)
and (d) show, there appear four peaks of the atom local-
ization, and the detecting probability is reduced to 1/4.
So, we can say that adjusting the probe field detuning can
realize the quantum control of localization and reduce
the uncertainty in measuring a particular position of the
atom by a factor of 2. On the other hand, the peaks in
Fig. 7(b) are narrower than those in Fig. 7(a). This indi-
cates that a suitable increment in the probe field detuning
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Fig. 7. Filter function F (x) (in arbitrary units) as a function
of kx for different probe field detunings. (a) Δ = 0.05, (b)
Δ = 0.15, (c) Δ = 3.00, (d) Δ = 5.00.

can improve the degree of atom localization. However,
when the probe field detuning is large, as Figs. 7(c) and
(d) show, the degree of atom localization becomes worse
than those in Figs. 7(a) and (b).

In summary, we presented two localization schemes uti-
lizing interacting double-dark resonances. We demon-
strated that atom localization via interacting double-
dark resonances can show new features which are hardly
found in the Λ-type system, where only one dark state
exists. In the tripod system, the probability of detecting
the atom within a unit wavelength domain is increased to
1/2 instead of usual 1/4 when the Rabi frequency of the
control field is adjusted to the maximum Rabi frequency
of the standing-wave field. The resolution for atom local-
ization can be increased by reducing the detuning value
to nonzero value. In the Λ-type four-level system, both
the probability and the precision can be controlled by the
detuning of the weak probe field. Adjusting the probe
field detuning can not only make the atom localized at
the nodes of the standing-wave field with high precision,

but also increase the detecting probability of the atom at
a particular position by a factor of 2.

D. Cheng’s e-mail address is dchcheng@siom.ac.cn.
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