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Image denoising using least squares wavelet
support vector machines
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We propose a new method for image denoising combining wavelet transform and support vector machines
(SVMs). A new image filter operator based on the least squares wavelet support vector machines (LS-
WSVMs) is presented. Noisy image can be denoised through this filter operator and wavelet thresholding
technique. Experimental results show that the proposed method is better than the existing SVM regression
with the Gaussian radial basis function (RBF) and polynomial RBF. Meanwhile, it can achieve better
performance than other traditional methods such as the average filter and median filter.

OCIS codes: 100.3020, 100.2000, 100.5010, 100.7410.

Image denoising is used to improve the quality of an im-
age corrupted by a lot of noises due to the imperfec-
tion of image acquisition systems and transmission chan-
nels. Having the property of multi-resolution, wavelet
transform is one of the most widely used tools in image
denoising[1−4]. Support vector machine (SVM), which
is based on statistic learning theory, was proposed by
Vapnik[5]. Lately, least squares support vector machine
(LS-SVM)[6] is gaining more and more attention, mostly
because it has some very attractive properties, regard-
ing the implementation and the computational issues of
teaching. In this paper, we combine LS-SVM and wavelet
technique, and apply them in image denoising.

Suppose we have a training set {(xi, yi)}N
i=1, where

xi ∈ Rd, yi ∈ R, Rd represents the input space, d is the
dimension. The basic approximation problem could be
solved by finding a set of weights ω = {ω1, ω2, · · · , ωN}
with the function

yi = f (xi, ω) =
N∑

i=1

ω∗φi (x) + b, (1)

where φ (x) is the mapping function and b is a scalar.
The quadratic loss function is selected in LS-SVM. The

following optimization problem of LS-SVM is formulated
as

minimize J =
1
2
‖ω‖2 +

1
2
γ

N∑
i=1

ξ2
i , (2)

subject to yi = ωφ (xi) + b + ξi, i = 1, 2, · · · , N, (3)

where ξ ∈ RN×1 is the error vector, γ is the regulariza-
tion parameter.

In LS-SVM, one solves the constrained optimization
problem (2) and (3) by constructing the Lagrangian:

L (ω, b, ξ, α, γ) =
1
2
ωT · ω +

1
2
γ

N∑
i=1

ξ2
i

−
N∑

i=1

αi (ωφ (xi) + b + ξi − yi), (4)

where the parameters αi (i = 1, 2, · · · , N) are the La-
grange multipliers, in which αk �= 0 are called support
vectors (SVs).

Then we define⎧⎪⎪⎨
⎪⎪⎩

y = [y1, y2, · · · , yN ]T

H = [1, 1, · · · , 1]T

α = [α1, α2, · · · , αN ]T

Zkh = φ (xk)T · φ (xh)

, (5)

where H ∈ RN×1. Based on Mercer’s condition, we
define the kernel

K (x, x′) = φ (x)T · φ (x′) , k, h = 1, 2, · · · , N. (6)

Then we can obtain[
0 HT

H Z + γ−1I

] [
b
α

]
=
[

0
y

]
, (7)

and the resulting LS-SVM model for function estimation
becomes

f (x) =
N∑

k=1

αkK (x, x′) + b, (8)

where α, b are solutions of Eq. (7).
SVM uses SV kernel to map the data from the input

space to a high-dimensional feature space in which we
can process a problem in linear form. Zhang et al.[7]
proposed a practical way to construct a wavelet kernel
which combines wavelet technique with SVM using the-
oretic analysis. It showed the feasibility and validity of
wavelet SVM in regression. The kernel, which satisfies
the conditions of Mercer theorem, was defined as

K (x, x′) =
N∏

i=1

h

(
xi − x′

i

a

)

=
N∏

i=1

(
cos
(

1.75 × (xi − x′
i)

a

)
exp

(
−‖xi − x′

i‖2

2a2

))
,

(9)
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where a is a dilation coefficient, and x, x′ ∈ RN .
In this paper, we combine LS-SVM with the wavelet

kernel described above, and we can get LS-WSVM. Then,
the optimal decision function for regression can be ob-
tained as

f (x) =
N∑

k=1

αk

N∏
i=1

h

(
xi − xk

i

ak

)
+ b, (10)

where xk
i is the ith component of the kth training sample,

ak (k = 1, 2, · · · , N) are the wavelet dilation coefficients.
Wavelet coefficients are correlated in a small neigh-

borhood. A large wavelet coefficient probably has large
coefficients at its neighbors. Cai[8] proposed an adaptive
block thresholding algorithm in which the characteris-
tics of the neighboring coefficients were considered to
determine shrinkage thresholds. In this paper, we extend
Cai’s idea to the image situation, and use the new filter
operator T which will be described below to modify the
coefficient centered at the neighborhood window.

For each wavelet coefficient dj,k (j is the scale index,
and k is the position index) of interest, we need to con-
sider a neighborhood window around it. In previous
experiment[9], the immediate neighborhood window sizes
of 3 × 3 and 5 × 5 are good choices. Here we choose the
diamond-like window illustrated in Fig. 1. On one hand,
it has better effect than a 3 × 3 neighborhood window;
on the other hand, it has higher calculation efficiency
than a 5 × 5 neighborhood window. Besides, the size of
diamond-like neighborhood can be changed at different
levels. There are 13 coefficients in the diamond-like
neighborhood window at the first level, and 5 coefficients
at the next level.

A two-dimensional (2D) gray level image can be re-
garded as a continuous function y = f (x) : R2 → R1,
where the input x̄ is a 2D vector that equals the row and
column indices of a pixel, and the output y is a scalar
value indicating the gray level of that pixel. Based on the
theory of LS-SVM for data regression, we regard the row
and column indices of wavelet subband images as the in-
put elements of LS-SVM, and the wavelet coefficients in
the window as the output elements. As to the neighbor-
hood of coordinates r, c, all the neighborhood elements
are considered as the input vectors of LS-SVM, and then
we can construct the nonlinear formula between input
coordinate vectors and wavelet coefficients centered at
the neighborhood window.

As illustrated by Liu et al.[10], with Eq. (7), we can get

Fig. 1. Neighborhood window centered at the wavelet
coefficient to be thresholded.

[
b
α

]
=
[

0 HT

H Z + γ−1I

]−1 [
0
y

]
. (11)

We define Ω = Z + γ−1I, matrices A and B{
A = Ω−1

B = HTΩ−1/HTΩ−1H
, (12)

then Eq. (11) can be rewritten as{
b = By
α = A (I − HB) y

. (13)

So, we can get the wavelet estimate function of the LS-
SVM with Gaussian radial basis function (RBF) as

f (r, c) =
N∑

i=1

αi exp

⎧⎨
⎩−

(
|r − ri|2 + |c − ci|2

)
σ2

⎫⎬
⎭+ b, (14)

where ri, ci are the image coordinates, and σ is the width
of Gaussian kernel.

With Eqs. (12) and (13), Eq. (14) can be rewritten as

f (r, c) = {FA (I − HB) + B} y = Ty, (15)

where F = [f1, f2, · · · , fN ], T = FA (I − HB) + B, T
is called filter operator. As to Gaussian RBF, fi =

exp
{
− (|r−ri|2+|c−ci|2)

σ2

}
. As to polynomial kernel, fi =

(r · ri + c · ci + 1)d, and d is the order of polynomials.
Given input vectors, kernel type, kernel parameters,

and regularization parameter, we will get A and B from
Eq. (12), then pre-calculate the filter operator T , and it
is a constant matrix.

We use the filter operator T to each high-frequency
subband, and define the window center (0,0) where ri = 0
and ci = 0. Then the regression estimated value of win-
dow center f̄(0, 0) = TY . In our algorithm, the shrinkage
strategy is to compare the estimated value f̄(0, 0) with
the original coefficient value f(0, 0) of that pixel. And
we can get the modified wavelet coefficient fm from the
following rule:

fm =

⎧⎨
⎩

f̄(0, 0)
∣∣f(0, 0) − f̄(0, 0)

∣∣ < p
α × f(0, 0) + (1 − α) × f̄(0, 0)∣∣f(0, 0) − f̄(0, 0)

∣∣ ≥ p
, (16)

where α ∈ [0, 1] is a parameter and p = 0.3 × max (f) is
a threshold, max (f) is the maximal value of the wavelet
coefficients in that subband. This equation means that
if the margin between estimated value and original value
is limited in a fixed interval, we will consider it as signal,
otherwise, we will consider it as noise and reconstruct it.
In Eq. (16), the value of α is generally chosen between
0.5 and 1, and we choose α = 0.6 in this paper.

Therefore, in the three detailed subbands of wavelet
domain, our crucial proposed algorithm is as follows.

Step 1: Proceed with 2D orthogonal wavelet transform
to the image corrupted by Gaussian noise and get the
wavelet coefficients dj,k.

Step 2: Calculate the filter operator T according to
Eq. (15).

Step 3: Estimate the center coefficient value of the
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window with the equation f̄(0, 0) = TY .
Step 4: Manipulate wavelet coefficients according to

the rule of Eq. (16).
Step 5: Repeat Steps 3 and 4 to each high subband at

each level.
Step 6: Compute inverse wavelet transform to the

manipulated image coefficients and obtain the denoised
image.

To verify the proposed algorithm, sym4 wavelet is used
for the wavelet decomposition throughout this work. We
performed our experiments on the well-known 256× 256
Lena and Girl gray images, which had been corrupted by
the addition of simulated spatially Gaussian noise. As to
the kernel, we chose the Gaussian RBF with σ2 = 0.2,
the polynomial kernel with the order d = 1, and the
wavelet kernel described in this paper, respectively. The
wavelet decomposition level was limited to two. To quan-
titatively evaluate the method, the peak signal-to-noise
ratio (PSNR) was calculated and the results were com-
pared with those obtained by using some traditional
method, such as LS-SVM with Gaussian RBF, LS-SVM
with polynomial kernel, average filtering, and median
filtering.

Table 1 lists the PSNR values for the Lena image at
five noise levels. Figure 2 shows the comparison of the
denoised Lena image corrupted with Gaussian noise, and
Fig. 3 shows the comparison of PSNR between the orig-
inal image and other three crucial methods. From the
experimental results, we can get our conclusions as fol-
lows. 1) When the clean image is corrupted by Gaussian
noise, it has better performance to choose wavelet kernel
than Gaussian RBF kernel and polynomial kernel. 2)
Wavelet kernel preserves most of the detail information
than any other methods discussed in this paper. 3) At
a high level of SNR, our proposed method has better
efficiency than any of the other methods, such as aver-
age filter and median filter, but when the SNR is at a
low level, median filter has better efficiency. Meanwhile,
we should emphasize that all the methods we discussed
in this paper will ruin the quality of the image if the
SNR is too high, in this situation, we should ignore the
corruption caused by the noise.

In this paper, with the regression theory of LS-SVM,
we get a new filter operator in wavelet domain to modify
the neighborhood wavelet coefficients. Wavelet trans-
form and denoising theory are discussed firstly, and then
wavelet support vector machine (WSVM) is constructed
based on the wavelet kernel. To evaluate the method, we
compared our proposed theory with other image denois-
ing methods through processing the image with Gaussian

noise. Experimental results show that our proposed al-
gorithm is better than the conventional denoising scheme
in terms of PSNR.

Fig. 2. Comparison of different denoising methods for Lena
image with PSNR = 24.04. (a) Original Lena image; (b) noisy
Lena image; and denoised images by using (c) the proposed
method, (d) Gaussian RBF, (e) polynomial RBF, (f) median
filtering.

Fig. 3. Comparison of PSNR between the original image
(Lena) and three methods. MSE: mean square error.

Table 1. PSNRs (dB) for Lena (mean = 99, std = 20.6458) and Girl (mean = 99.3750, std = 22.1549)
Images, and the Denoised Images by Five Denoising Methods

Input
Lena 256 × 256 Girl 256 × 256

30.06 26.539 24.04 22.102 30.06 26.539 24.04 22.102

Gaussian RBF 28.921 28.005 26.974 25.93 28.664 27.562 26.495 25.21

Polynomial Kernel 28.514 27.608 26.526 25.429 28.195 27.226 26.147 24.962

Proposed 29.367 28.28 27.07 25.871 28.929 27.954 26.817 25.683

Average Filter 24.939 24.868 24.771 24.65 25.399 25.32 25.21 25.08

Median Filter 27.477 27.129 26.697 26.219 26.908 26.447 26.312 25.94
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