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A novel type of solitons in electron-ion plasmas
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By using one-dimensional self-consistent relativistic fluid model, a novel type of moving relativistic electro-
magnetic solitons with high intensity in electron-ion plasmas where the ion dynamics is taken into account
is investigated numerically. Unlike solitons with single-humped scalar potential found in previous studies,
these solitons possess multi-humped scalar and vector potential. The existence of such soliton solutions
is investigated in plasmas with different background densities, and the properties of these solitons are
presented in detail. We found that the peculiar profile of electron density has alternating regions of humps
and dips like a Bragg’s grating.
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The technique of ultrashort, ultra-intense laser pulses is
developing rapidly in recent years. It makes it possible
to produce laser pulses with a few-cycle duration and
extremely high intensity. The nonlinear propagation of
such pulses in a plasma is a topic of considerable current
research interest due to its application in particle accel-
erators, photon accelerators, and the fast ignition scheme
of laser fusion.

Ultraintense laser pulses can propagate like solitons for
a very long distance without apparent changes in prop-
erties, as have been observed in particle-in-cell (PIC)
simulations[1−5]. Electromagnetic solitons with relativis-
tic amplitudes were first investigated by Kozlov et al.[6].
Analytical studies on relativistic solitons are usually
based on one-dimensional (1D) theories[7], and several
novel solutions have been found[8−16]. Shen et al. stud-
ied subcycle relativistic solitons that could propagate
from low density to high density plasmas[12]. The ion
motion influence on relativistic soliton has firstly been
investigated numerically in Refs. [14] and [15], and the
properties of multi-humped solitons are investigated in
detail. Poornakala et al.[13] studied solitons in cold over-
dense electron-ion plasmas, and found weakly relativistic
single-humped solitons with a significant density cavita-
tion for both immobile and mobile ions. In these previous
studies, the number of humps refers to the peak number
of vector potential. As for scalar potential, these solitons
possess only one peak. That is to say, the scalar potential
of solitons found in previous studies has only one peak,
which encloses one or more peaks of the vector potential.

In this paper, using 1D relativistic fluid model, we
demonstrate a new type of soliton solutions with pre-
cisely given field energy and group velocity for given
pulse width and plasma density in plasmas where the
ion dynamics is taken into account. With the help of
the numerical solution of the boundary problem for a set
of nonlinear ordinary differential equations derived from
1D relativistic fluid model, we describe the properties of
this kind of solitons in detail. Unlike solitons with single-
humped scalar potential found in previous studies, this
new type of solitons possesses multi-humped scalar and

vector potential. The peculiar profile of electron density
has alternating regions of humps and dips like a Bragg’s
grating.

The theory of 1D circularly polarized solitons is usu-
ally presented within the relativistic hydrodynamic ap-
proximation used to describe both the electron and ion
components[13−15]. In this paper, the plasma is assumed
to be cold, that is to say, the electron and ion tempera-
tures are zero. To conveniently investigate the properties
of solitons, we normalize time through the laser frequency
ωL. Therefore, other variables such as space, velocity,
momentum, vector and scalar potentials, and particle
density are normalized by c/ωL, c, mαc, mec

2/e, and
nc, where mα is the rest mass of particles with α = e, i
denoting electron and ion, and nc = meω

2
L/4πe2 is the

critical density for the laser with a frequency ωL. In the
Coulomb gauge, the Maxwell’s equations for the vector
and scalar potentials, A and φ, and the hydrodynamic
equations for the densities nα and the canonical momen-
tum Pα of electrons and ions can be written as

∇2A− ∂2

∂t2
A − ∂

∂t
∇φ = neve − nivi, (1)

∇2φ = ne − ni, (2)

∂

∂t
nα + ∇ · (nαvα) = 0, (3)

∂

∂t
Pα = −∇(ραφ + γα) + vα ×∇× Pα, (4)

where Pα is related to kinetic momentum pα by Pα =
pα + ραA with the parameter ρα = (qα/qe)(mα/me),
γα = (1 + |pα|2)1/2, and vα = pα/γα is the fluid veloc-
ity.

Here we only consider 1D case, where ∂y = ∂z = 0. For
a circularly polarized laser pulse, the vector potential of
the electromagnetic field can be represented by

Ay + iAz = a(ξ) exp(i[ωτ + θ(ξ)]), (5)

with ξ = x − vgt, τ = t[16,17], while all the other quan-
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tities, φ, nα, γα, and pxα, are assumed to only depend
on the variable ξ. In this case, the relations Ax = 0 and
Py = Pz = 0 are satisfied.

Here we choose the boundary condition at the point
ξ = 0, a = 0, φ = 0, nα = n0, and pxα = 0 while n0

is unperturbed electron or ion density. The longitudinal
component of the kinetic momentum, the energy, and the
density of each species can be expressed as a function of
the potentials as pxα = (vgΦα − Rα)/(1 − v2

g), γα =
(Φ − vgRα)/(1 − v2

g), and nα = vg(Φα − vg)n0/(1 − v2
g),

where Φα = 1 + ραφ, Rα = [Φ2
α − (1 − v2

g)]1/2. Then,
for an elecron-ion plasma the following closed system of
equations for the potential is obtained

φ′′ =
vgn0

1 − v2
g

(
Φe

Re
− Φi

Ri

)
, (6)

a′′ +
1

(1 − v2
g)2

(
ω2 − M

a4

)
a = a

(
ne

γe
+ ρ

ni

γi

)
, (7)

where ρ ≡ |ρi| = me/mi, and M = a2[(1− v2
g)θ

′ +ωvg] in
Eq. (7) is an integration constant. For an infinite plasma,
M = 0. Then we can obtain

θ = − ωvg

1 − v2
g

+ θ0, (8)

where θ0 is a constant. Substituting Eq. (8) into Eq.
(5), we can obtain the phase to be exp(iωt/(1 − v2

g) −
ωvgx/(1 − v2

g)). Thus, the laser frequency is ωL =
ω/(1 − v2

g). Since the time variable is normalized by the
laser frequency, we obtain ω = 1−v2

g. And the wavenum-
ber is k = vg. Thus Eq. (7) transforms into

a′′ + a =
an0

1 − v2
g

(
1

Re
− ρ

Ri

)
. (9)

The system described by Eqs. (6) and (9) can be elim-
inated from Hamiltonian form, and has a first integral

W =
a′2

2
− φ′2

2(1 − v2
g)

− n0γe

1 − v2
g

− n0γi

ρ(1 − v2
g)

, (10)

where W is an integration constant. For an infinite
plasma, W = −(1 + 1/ρ)n0.

In previous studies, various approximations are used
to investigate the system described by Eqs. (6) and (9),
such as quasineutral approximation, weak nonlinear limit
etc.[15]. Under these approximations, the analytical enve-
lope solitons solution with single-humped scalar potential
can be obtained. However, for arbitrary amplitudes we
need to fully analyze a two-variable problem with respect
to a, φ described by Eqs. (6) and (9) where the laser am-
plitude is strongly coupled to the scalar potential. In
other words, for a given background density n0, finding
soliton solutions turns out to be an eigenvalue problem
in vg. To investigate this new type of soliton solutions in
an electron-ion plasma with a given background density,
we solve Eqs. (6) and (9) numerically, due to the com-
plexity of the problem. For a special background density
n0, we solve the system using Runge-Kutta method with
initial conditions φ′ = φ = 0, a′ = 0, a = a0 at ξ = 0,

where a0 is a very small value. In this paper, we choose
ρ = 1/1836.

In order to conveniently describe the properties of the
new-style solitons, we define the number of nodes of
vector potential a as p and the number of humps of
scalar potential φ as q. First, we consider solitons with
a single-humped scalar potential which encloses multi-
humped vector potential like Refs. [14] and [15]. In this
case, p = 1, 2, 3, · · · and q = 1. Furthermore, p0 is
defined as p when q = 1. For plasmas with different
background densities n0 = 0.5nc and 1.3nc, two solitons
with p = q = 1 are illustrated in subfigures of Figs.
1(a) and (d). Solitons with two and three-humped scalar
potentials are illustrated in subfigures of Figs. 1(b), (e)
and (c), (f). As can be seen from Fig. 1, those solitons
with multi-humped scalar potential change from those
with single-humped scalar potential. The peaks of a
have a tiny structure at the point of the valley bottom
of φ. The maxima of amplitude a and scalar poten-
tial of solitons with many q increase with the increase of
background density, which resembles soltions with single-
humped scalar potential. For a same q and different p,
the maxima of the scalar and vector potential are almost
invariable for solitons in a plasma with a same back-
ground density n0, as illustrated in Fig. 1.

This new style solitons changing from a soliton with
p0 = 2 are presented in Fig. 2.

From Figs. 1 and 2, we can find that p and q have a
special relation. When p0 is an odd, p = q; while p0 is
an even, p = 2q. To investigate the structure of plasmas
in the process of forming solitons, the profiles of electron
and ion densities are plotted in Fig. 2. Unlike the distri-
bution of electrons for solitons with q = 1 concave at the
center of the soliton, the distribution is drastically con-
vex such as a δ-function for a soliton with p = 4, q = 2,
as shown in subfigures of Figs. 2(b) and (d). The full

Fig. 1. Profiles of vector potential a, scalar potential φ,
and longitudinal electric field Ex = −φ′ of six solitons with
different p, q are shown in plasmas with different background
densities n0 corresponding to given different group velocities
vg. (a, b, c), and (d, e, f) are for n0 = 0.5nc and 1.3nc re-
spectively; (a, d), (b, e), and (c, f) are p = 1 = 1, p = q = 2,
and p = q = 3. (a), (b), (c), (d), (e), and (f) correspond to vg

= 0.763945, 0.762604, 0.76266278, 0.42535, 0.4237242, and
0.423731047, respectively.
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Fig. 2. Five solitons with p0 = 2 and different q are shown
in a plasma with background density n0 = 1.3nc. (a), (c),
(e), (g), and (i) are for normalized laser amplitude a, scalar
potential φ and longitudinal electric field Ex = −φ′; (b),
(d), (f), (h), and (j) is for normalized electron density ne

and ion density ni. (a, b), (c, d), (e, f), (g, h), and (i, j)
with p = 2, q = 2, p = 2, q = 4, p = 2, q = 6, p = 2,
q = 8 and p = 2, q = 10 corresponds to group velocity vg =
0.498571, 0.498158587, 0.498158892679, 0.498158892451244,
and 0.4981588924514133.

width of half-maximum (FWHM) of ne for a soliton with
q = 2 in a plasma of n0 = 1.3nc is about 0.0035λ. The
corresponding FWHM in time dimension is λ/vg, for λ
= 1 μm it is about 23.3 attosecond. It maybe provide
a new mechanism for producing an attosecond electrons
pulse.

With the increase of q, the distribution of electrons has
alternating regions of sharp humps and flat pits like a
Bragg’s grating. The electron density becomes a comb-
function when p is very large, as shown in Fig. 2. The
FWHM of every peak of ne is approximately equal for
a soliton with a same q. With the increase of q, the
FWHM of ne increases from about 0.0035λ, 0.0036λ,
0.0037λ, and 0.0038λ. The intervals between peaks of ne

are equal, about 1.4567λ. However, with respect to the
distribution of ions, except its hump number increasing
with the increase of q, it looks like that for solitons with
single-humped scalar potential. The maxima of electron
and ion densities corresponding to solitons with multi-
humped scalar potential are almost constant for different
q.

In the following, we will discuss what plasmas such soli-
tons can exist in. We look for the group velocity which

Fig. 3. Group velocity vg versus the plasma background den-
sity n0 for p = 2, q = 2 and p = 4, q = 2. The stars and
points refer to the eigenvalues for p = 2, q = 2 and p = 4,
q = 2, respectively.

can make the laser pulse propagate like such solitons in
plasmas with different background densities. Here the
group velocities are found corresponding to every other
0.1nc from 0.1nc to the density where solitons breaks, as
shown in Fig. 3.

The group velocity vg versus the plasma background
density n0 for p = 2, q = 2 and p = 4, q = 2 are plotted in
Fig. 3. By calculating in detail, we found that new-style
solitons for p0 = 1 and 2 can exist in plasmas with back-
ground densities lower than approximately n0 = 1.4nc

and 1.3nc. Beyond this range, the solitons breaks. Fur-
thermore, for a large p0, the laser pulse requires a larger
group velocity to propagate like these new solitons. For a
given p0, solitons with different q posses group velocities
whose values have a tiny difference, as illustrated in cap-
tions of Figs. 1 and 2. Although it is perhaps difficult to
form solitons with muli-humped scalar potential because
of the requirement for a very exactly defined group veloc-
ity, we are interested in the structure of electron density
like Bragg’s grating. Even if the solitons did not form,
the structure of electron density would have a form de-
scribed in Fig. 2. When the laser pulse propagates at a
group velocity close to that, a soliton can form.

In conclusion, using 1D relativistic fluid model, we have
shown ultrashort relativistic solitons with multi-humped
scalar and vector potential in electron-ion plasmas where
the ion dynamics is taken into account. By numerically
solving the boundary problem described by a set of non-
linear ordinary differential equations, the properties of
this new-style solitons are demonstrated in detail. We
found that solitons with p0 = 1 and 2 can only exist in
plasmas with background densities 0 < n0 ≤ 1.4nc and
0 < n0 ≤ 1.3nc, respectively. For a soliton with p = 4,
q = 2, the profile of electron density has a FWHM of
dozens of attoseconds in time dimension, which can pro-
vide a new mechanism producing an attosecond electron
pulse. Another interesting phenomenon is the structure
of electron density which has alternating regions of sharp
humps and flat pits like a Bragg’s grating. The results
are expected to be useful in understanding the nonlin-
ear propagation of localized laser pulses in plasmas such
as those in inertial confinement fusion and astrophysical
environments.

Z. Fang’s e-mail address is zbfang@siom.ac.cn.
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