
August 10, 2006 / Vol. 4, No. 8 / CHINESE OPTICS LETTERS 467

Spectrum analysis of all parameter noises in
repetition-rate laser pulse train
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The theoretical investigation of all parameter noises in repetition-rate laser pulse train was presented. The
expression of power spectrum of laser pulse trains with all parameter noises was derived, and the power
spectra of pulse trains with different noise parameters were numerically simulated. By comparing the
power spectra with and without pulse-width jitter, we noted that pulse-width jitter could not be neglected
compared with amplitude noise and timing jitter and contributed a great amount of noise into the power
spectrum under the condition that the product of pulse width and angular frequency was larger than 1.
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High repetition-rate pulses with low jitter are very im-
portant for high-speed optical communication system.
Noise characteristics of these pulse trains are crucial in
many applications such as ultrafast optical telecommu-
nication, detection and electric-optical sampling system
etc.. The noise of an optical pulse train can be cate-
gorized into three basic types: amplitude noise, phase
noise, and pulse-width jitter. The amplitude noise is the
fluctuation of pulse intensity; the phase noise (timing
jitter) is the random variation of pulse repetition time,
and the pulse-width jitter is the fluctuation of pulse
duration. The amplitude and pulse-width fluctuations
can reduce detecting accuracy in optical probe exper-
iments and the timing jitter can degrade time resolu-
tion in sampling system. It is necessary to evaluate all
kinds of jitter of output pulses. One of the techniques
to quantify the noise in these pulse trains is spectral
measurement, first introduced by Linde[1]. Several re-
search groups have used this technique to measure and
analyze the noise of different lasers[2−4]. And other
techniques are also known to analyze the noise of op-
tical pulses, such as time-domain demodulation[5], cross-
correlation[6], phase noise measurement[7], and indirect
phase comparison method[8]. Besides, the theoretical
analysis of laser noise was also reported[9]. However,
the measurement and analysis of laser noise were lim-
ited in low frequency. Previous studies only considered
amplitude and phase noise, not including pulse-width
fluctuation. In most diode lasers, however, the pulse-
width jitter cannot be neglected. In this paper, we de-
rived the pulse power spectrum with all noise (includ-
ing amplitude noise, timing jitter, and pulse-width jitter)
in theory, analyzed qualitatively the contribution of the
pulse-width jitter to the noise of pulse trains.

Considering a constant pulse shape model, including
not only amplitude noise and timing jitter, but also pulse-
width jitter, the intensity of this period pulse trains can
be represented as[10]

I(t) =
N∑

n=−N

(I + In)h(
t − nT + Tn

τ + τn
), (1)

where h(t) is the normalized dimensionless intensity

shape function of the pulse, I the average amplitude,
In the amplitude fluctuation, T the average repetition
period of the pulse, Tn the pulse timing jitter, τ the av-
erage full-width at half-maximum (FWHM) pulse-width,
τn the pulse-width jitter. The power spectrum of pulse
intensity I(t) can be described as[11]

SI(ω) = lim
N→∞

〈|I(ω)|2〉
(2N + 1)T

, (2)

where I(ω) is the Fourier transform of the pulse inten-
sity I(t). By the Fourier transform shift and similarity
theorems,

I(ω) =
N∑

n=−N

(I + In)(τ + τn)

×H [(τ + τn)ω] · exp[−iω(nT − Tn)], (3)

where H(ω) is the Fourier transform of the pulse inten-
sity shape h(t) and (τ + τn)H [(τ + τn)ω] = τH(τω)(1 +
V (ω)

τ τn)[10], V (ω) is a function depending on pulse shape.
Supposing amplitude noise, timing jitter, and pulse-
width jitter are all uncorrected, then

〈|I(ω)|2〉 = |I|2|τH(τω)|2(Y1 + Y2), (4)

where

Y1 = (2N + 1)[1 +
〈I2

n〉
I2

+
V 2(ω)

τ2
〈τ2

n〉], (5)

Y2 =
N∑

n=−N

N∑

m=−N

{[1 +
〈In〉2
I2

+
V 2(ω)

τ2
〈τn〉2]

×〈exp[iω(Tn − Tm)]〉 · exp[−iω(n− m)T ]}. (6)

Supposing the different pulses are statistically indepen-
dent, substituting Eqs. (4), (5) and (6) into Eq. (2), and

1671-7694/2006/080467-03 http://www.col.org.cn



468 CHINESE OPTICS LETTERS / Vol. 4, No. 8 / August 10, 2006

divided by (2N + 1)T , then

SI(ω) =
I2|τH(τω)|

T
{σ2

I + V 2(ω)σ2
τ + σ2

T ω2 +
1
4
σ4

T ω4

+(1 − σ2
T ω2 +

1
4
σ4

T ω4)ω1

+∞∑

k=−∞
δ(ω − ωk)}, (7)

where σ2
I = 〈I2

n〉−〈In〉2
I2 , σ2

T = 〈T 2
n〉 − 〈Tn〉2, σ2

τ = 〈τ2
n〉 −

〈τn〉2, σI , σT , and στ are root-mean-square (RMS) values
of amplitude noise In, timing jitter Tn, and pulse-width
jitter τn, respectively. Equation (7) was deduced under
the assumption that all noise contents are small.

Supposing pulse shape is Gaussian, then V 2(ω) =
1 − (τω)2 + 1

4 (τω)4. Compared with 1
4σ2

τ τ2ω4, 1
4σ4

T ω4

can be neglected at high frequency; thus

SI(ω) =
I2|τH(τω)|

T
{[σ2

I + σ2
T ω2

+(1 − τ2ω2 +
1
4
τ4ω4)

σ2
τ

τ2
]

+(1 − σ2
T ω2)ω1

+∞∑

k=−∞
δ(ω − ωk)}, (8)

and the noise power can be expressed as

σ2
n = σ2

I + σ2
T ω2 + (1 − τ2ω2 +

1
4
τ4ω4)

σ2
τ

τ2
, (9)

where σ2
n, σ2

I , σ2
T , and σ2

τ correspond to the RMS of to-
tal noise, amplitude noise, timing jitter, and pulse-width
jitter, respectively. It is noted that the timing jitter is
proportional to ω2, and the pulse-width jitter is propor-
tional to ω2 and ω4. Equation (8) is just the derived
mathematic expression.

If the pulse-width jitter is not taken into consideration,
i.e., στ = 0, then the power spectrum of pulse intensity
is represented as

SI(ω) =
I2|H(ω)|

T
{[σ2

I + σ2
T ω2]

+(1 − σ2
T ω2)ω1

+∞∑

k=−∞
δ(ω − ωk)}. (10)

Comparing Eqs. (8) and (10), we note that the pulse-
width jitter contributes its power especially in (τω)4.
Thus the pulse-width jitter will contribute a great
amount of noise to the pulse power spectrum when
τω > 1, where τ is the pulse width and ω is the an-
gular frequency of the harmonic of the pulse repetition
rate.

To illustrate the above results, we numerically simu-
lated power spectrum of pulse jitter according to Eq. (8)
setting σI = 0.05, σT = 1.1 ps, στ = 1.5 ps, repetition
frequency f = 10 GHz, average pulse width τ = 10 ps. To
illuminate the contribution of pulse-width jitter to noise
term, power spectra of pulse trains with (1) only am-
plitude noise, (2) amplitude noise and timing jitter, (3)

Fig. 1. Numerically simulated power spectra of 10-GHz pulse
train (τ = 10 ps) with amplitude noise (a), amplitude noise
and timing jitter (b), all noise terms (c). (d) The third-order
power spectrum curves from bottom to top are A, B, C, cor-
responding to spectra with only amplitude noise, amplitude
noise and timing jitter, and all noises, respectively.

all noises (including amplitude noise, timing jitter, and
pulse-width jitter) were numerically simulated respec-
tively. Figure 1 shows the spectral power. As expected,
repetition frequency occurs at harmonic of 10 GHz. Fig-
ure 1(a) shows the power spectrum with only amplitude
noise. The noise is a constant in all the spectrum ranges,
except that the power falls off in high frequency, which
is limited by the bandwidth |H(ω)|2. Figure 1(b) shows
the power spectrum with the amplitude noise and tim-
ing jitter, the jitter continuum increases with ω. Under
the same condition, Fig. 1(c) shows the power spectrum
with all noises. Figure 1(d) presents the third-order
power spectrum of pulse trains.

Comparing Figs. 1(b) and (c), the noise power in Fig.
1(c) is greater than that in Fig. 1(b) at about 20 GHz
where τω ≈ 1.26, and this becomes markedly at 30
GHz, where τω ≈ 1.88. The noise power is consistent
well with Eq. (8). Curves in Fig. 1(d) correspond to the
third-order (f3 = 30 GHz) power spectrum of the pulse
trains with (1) only amplitude noise (A), (2) amplitude
noise and timing jitter (B), (3) all noise (amplitude noise,
timing jitter, and pulse-width jitter) (C). As shown in
Fig. 1(d), the noise powers in curves A, B, and C are
about −45, −30, and −23 dB at 29 GHz, respectively.
The noise power increases from −30 (not including pulse-
width jitter) to −23 dB (considering pulse-width jitter),
the difference is approximately 7 dB. It indicates that
when τω > 1, the pulse-width jitter contributes a sig-
nificant amount of noise to the power spectrum. At high
frequency (> 80 GHz), pulse noise falls off because of
the limited bandwidth |H(τω)|2.

Furthermore, consider that pulse-width jitter and the
pulse noise are related to pulse width. While τ = 5 ps,
the corresponding power spectra without and with pulse-
width jitter are shown in Figs. 2(a) and (b), respectively.
We observed that the power spectrum in Fig. 2(a) is the
same as that in Fig. 1(b), that is to say, pulse width
has nothing to do with pulse power spectrum without
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Fig. 2. Numerically simulated pulse power spectra of 10-GHz
pulse train (τ = 5 ps) with only amplitude and timing jitter
(a) and all noise terms (b).

Fig. 3. Third order (f3 = 30 GHz) power spectrum of pulse
of different pulse width with all noises. (a) τ = 10 ps; (b)
τ = 5 ps.

pulse-width jitter.
Also, for the same angular frequency ω (or same repe-

tition frequency f), the noise power in Fig. 2(b) (τ = 5
ps) is smaller than that in Fig. 1(c) (τ = 10 ps). Larger
τ obtains larger τω which results in larger contribution
of pulse-width jitter to noise power. This can be indi-

cated by comparing the noise power in Figs. 3(a) and (b),
which corresponds to the third-order power spectrum of
pulse trains. The noise power reaches −23 dB in Fig.
3(a) and −26 dB in Fig. 3(b) at 29 GHz, respectively.
The difference is about 3 dB.

If one could acquire the total noise power σ2
n that corre-

sponds to three different values of n, where n corresponds
to the harmonic number of power spectrum; then σ2

I , σ2
T ,

and σ2
τ can be determined by solution of the set of three

equations such as Eq. (9).
In conclusion, based on the definition of power spec-

trum we have derived the mathematic expression of
harmonic number dependence of pulse power spectrum.
We have demonstrated the pulse power spectrum with
noise (including amplitude fluctuation, timing jitter, and
pulse-width jitter) as a function of ω. By comparing the
pulse power spectra with (1) only amplitude noise, (2)
amplitude noise and timing jitter, (3) all noises (ampli-
tude noise, timing jitter, and pulse-width jitter), we qual-
itatively analyzed the contribution of every noise term
to the total noise power. Especially, by comparing the
noise power with and without pulse-width jitter, we indi-
cated that the pulse-width jitter, compared with ampli-
tude fluctuation and timing jitter, could not be neglected
and contributed a great amount of noise into the power
spectrum when τω > 1. The requirements of all noise
parameters determination are also proposed in this pa-
per.
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