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Diffractive-optical processing of temporal signals,
part II: optical tapped-delay line
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The topic of this presentation is the utilization of time for optical information processing. As clock rates
in computing and communication systems increase and reach the THz border, optical techniques for signal
filtering, shaping and clock distribution become attractive. We discuss the use of optics in temporal
processing and consider in particular diffractive solutions. In this paper, we describe the use of double
diffraction for implementing an ultrafast tapped-delay line.
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Two developments of recent years have made it possible
to generate and process wavefronts in a very flexible
way: first, computer algorithms (and speed of the com-
putation) and second, micro/nano-technology for gener-
ating computer-generated elements. This combination
of computer-based design and lithographic fabrication
was, in principle, already used in the 1960s to make the
first computer-generated holograms[1−3]. Since then new
tools have been developed such as the iterative Fourier-
transform algorithms due to, for example, Gerchberg and
Saxton[4].

The fabrication of diffractive elements by means of
microlithography was demonstrated already in the late
1960s[5,6]. Since then a large number of implementations
and improvements have been demonstrated and applied
to different areas of optical information technology like
beam splitting, shaping, storage, imaging, interconnec-
tion, systems integration, etc.. Overviews of different
techniques and applications are given in Ref. [7—9]. An
example of an optical light distribution generated by a
lithographically fabricated diffractive optical element is
shown in Fig. 1[10].

The basic principle of combining computer simulation
and design on the one hand with lithographic structuring

Fig. 1. Output of a computer-generated diffractive optical
element calculated by an interative design algorithm.

on the other has continued since the 1960s all the way
down to the nanoscale. Photonic crystals are an impor-
tant class of nanoscopic devices which hold promise for
realizing compact opical and optoelectronic devices[11].
Here, the need for “smart” modeling approaches is im-
portant in order to minimize computing time. A specific
approach is based, for example, on the concept of Flo-
quet modes and described in Ref. [12].

Communications systems comprise optics for trans-
mission and electronics for switching purposes. Current
communication systems operate at 40 Gb/s. However,
this is well below the bandwidth of optical fibers. Just
considering the bandwidth of an optical fiber, individual
time division multiplexed (TDM) communication chan-
nels with data rates > 1 Tb/s would be possible. While
this is hard to achieve for the optics, it may be even
harder for electronics. The fastest electronic devices run
at approximately 600 GHz. Hence, in order to break the
1 THz boundary, more tasks in the system have to be
accomplished by optical means. One of them is linear
processing, as used, for example, in filtering systems.
Recently, several approaches have been studied to im-
plement filters for all-optical networks[13]. A specific
approach is the use of integrated optical ring resonators,
which allows one to realize infinite impulse response
(IIR) filter structures[14]. Here, we want to discuss an
approach to implement a finite impulse response (FIR)
filter based on the self-imaging phenomenon. Our goal
is to build a filter for the 1—10 THz regime.

Viénot and Froehly were probably the first to discuss
the temporal processing of optical signals in detail[15].
In their work they make use of the principle of detour
phase illustrated here in Fig. 2. A grating of period
p introduces time delays τ = p sinα/c = λ/c between
the beamlets traveling in the direction α of the first
diffraction order. The impulse response of a diffraction
grating is given as a sequence of delta peaks as shown
in Fig. 3. Its Fourier transform is the transfer function.
The free spectral range (FSR) ∆νt is given by the inverse
of the time delay τ .

Due to the short temporal delay τ = λ/c, grating spec-
trometers operate at a free spectral range in the optical
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Fig. 2. Optical grating diffraction as tapped-delay line: in
direction α, the grating generates time delays τ = p sin α/c
where p is the grating period.

Fig. 3. A linear filter can be described by its impulse response
h(t) in the temporal domain or equivalently, by its transfer

function H̃(νt) in the frequency domain.

frequency domain, i.e., at νt ≥ 100 THz. For the pur-
pose we discussed above, namely optical communication
systems, this value is too large by one to two orders
of magnitude. In order to shift the FSR to a smaller
frequency and still use a grating-based FIR, we would
have to implement larger time delays by one to two or-
ders of magnitude. One possibility to achieve that is to
operate the device in a higher diffraction order, say the
Mth order. In that case, the delays are increased by
the factor M and the value of the FSR is reduced corre-
spondingly. An arrayed-waveguide grating (AWG)[16,17]

would be a possible implementation for this approach.
AWGs are usually operated at very high orders, typically
M = 50, · · · , 100. However, AWGs are expensive devices
on the one hand and they are difficult to handle ther-
mally. Here, we suggest to use another approach based
on self-imaging and double-diffraction.

Self-imaging is usually known from the Talbot effect[18]
which occurs for laterally periodic wavefields (period
p). Self-imaging means that the wavefield (which is as-
sumed to be monochromatic) replicates itself along the
z-direction with period zT = 2p2/λ, called the “Talbot
distance”. By using two gratings, as shown in Fig. 4,
one can build a Talbot interferometer[19]. Talbot inter-
ferometers have been used for applications in wavefront
testing[19] and resonator coupling[20,21], for example. Re-
cently, the use of a Talbot interferometer as a temporal
filter was demonstrated[22,23] using the setup shown in
Fig. 4. It uses a first beam splitter grating, to split an
incoming signal into different diffraction orders. After
propagation over a multiple of the Talbot distance a sec-
ond grating is used to combine the different diffraction
orders into a single output beam. This works efficiently
if both gratings are phase gratings and if G2 is phase-
complementary to G1. The temporal behaviour of a

Fig. 4. Talbot interferometer as an optical tapped-delay line
filter. Grating G1 is used to split up the incoming beam into
N orders. By placing a phase-complementary grating G2 in
one of the Talbot planes (here: the first Talbot plane), it
combines the different diffraction orders into a single output
beam. In the temporal domain, a delay occurs between the
different diffraction orders.

Talbot interferometer was measured recently[24].
A generalization, more suitable for implementing a FIR

filter, is based on Montgomery self-imaging[25]. Whereas
in the Talbot case, the spatial frequencies of the wavefield
are given as νT

x,n = nν1 = n/p, in the case of Montgomery
self-imaging one has νM

x,n ≈
√

nν1. The latter expression
holds in the case of the paraxial approximation. Un-
like the Talbot-effect, however, the Montgomery-case of
self-imaging is not limited to paraxial propagation. A
Montgomery wavefield can be implemented by using a
Fabry-Perot filter[26] or by using diffractive optics[27].
Going beyond the paraxial case does not represent any
problem in theory, but possibly for the implementation
of the diffractive optics.

The temporal aspects of Fresnel propagation have been
analyzed recently for simple gratings[28] and double grat-
ing setups[29,30]. In particular, it was shown that a Mont-
gomery interferometer acts as an FIR filter where the
dispersive behaviour and the response function can be
adjusted. Various experimental steps will be necessary
to demonstrate its use as a filter for the Tb/s-domain.
One is to “slow down” its operation to the 1, · · · , 10 THz
regime. In our experiments so far, the FSR was λ/c. In
order to increase this value and operate the filter in the
THz band, the use of multimode waveguides might be
suitable[31−33]. The propagation of a multimode Mont-
gomery wavefield inside such a waveguide is visualized
by simulation shown in Fig. 5[34]. Here, the length of

Fig. 5. Simulation of the wavefield in a Montgomery inter-
ferometer with reflecting sidewalls, for example, a waveguide
of suitable dimensions. One can see that the wavefield repro-
duces itself along the direction of propagation, although it is
not laterally periodic.
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the waveguide is assumed to be L = 10zT. The physical
length of such a device would be on the order of 10 mm.

Optics or photonics has a powerful competitor: elec-
tronics. For several decades, electronics has continued to
increase its bandwidth. However, a physical limit exists
at around 1 THz. Optical devices, in particular, those
suitable for integration typically operate at frequencies
of 100 THz and more. Electronics can do almost ev-
erything, optics often needs the help of electronics. An
optimal technology might comprise both, electronics and
optics. For future optoelectronic information processing
systems, it is necessary that both meet in the tempo-
ral frequency domain. “Diffractive optics” — the art of
controlling the propagation of light signals by suitable
technological means — can play an important role for
realizing suitable optical devices for the THz domain.

The help of Matthias Gruber and Hans Knuppertz with
preparing the manuscript is gratefully acknowledged. J.
Jahns’s e-mail address is juergen.jahns@fernuni-hagen.
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