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Effects of PMD on dispersion managed soliton links
with coarse-step approach
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Statistical distributing and magnitude of the first and second-order polarization mode dispersion (PMD)
vectors are evaluated and the timing displacements of its effects on dispersion-managed soliton (DMS)
are also given with help of coarse-step approach, such as Jones matrix (JME) and coupled nonlinear
Schrodinger equations (CNLSE). The results showed that the coarse-step approach can not only simulate
the statistical characteristics of PMD, but also compute the nonlinear pulse characteristic of timing and
energy jitters evolution affected by PMD. The presented results are very useful to simplify the measurement
of second-order PMD and instructively reveal the degree of PMD effects in DMS systems.
OCIS codes: 060.5530, 060.2330, 060.2420, 320.7110.

Recently, the dispersion-managed solitons (DMSs) are of
great interest in soliton communication systems, because
they provide some prior advantages compared with con-
ventional solitons, such as higher pulse energy and signal
noise ratio, lower averaged dispersion line and timing jit-
ter. However, in the dispersion managed systems, lower
averaged dispersion line can lead to polarization mode
dispersion (PMD) becoming even more obvious at higher
bit rates and in longer transmission distance, which may
induce to lots of dispersion waves and the differential
group-delay (DGD) accumulating.

The performance degradation due to PMD effects in
DMS systems has been quantified with experiment or
simulated, but its statistical characteristic has not been
analyzed!'=3]. At the same time the statistical proper-
ties of first- and second-order PMDs have already been
derived, measured, and simulated!*%!, but it is in linear
systems or at very low bit rates. Here, we will simplify
the relationships between the first-order and second- or-
der PMDs and simulate its effects on DMS transmission
systems with coarse-step approach, which is very suited
to dispersion managed systems.

We characterize PMD by the first- and second-order
PMD vectors 2 (w) and Q,(w) in Stokes space

Qw) = At(w)q(w), (1)
Q, (CU) =Ar, (w)q(w) + AT(w)qw (w)a (2)

here q(w) aligned with the principal state of polarization
(PSP) and q, (w) is unit Stokes vector and differential
with respect to the optical angular frequency w, At(w)
is the differential group delay (DGD). Whereas Q,,
= PCD = Ar,(w)q(w) is parallel to Q(w) and leads
to polarization-dependent chromatic dispersion (PCD),
and Q,, = A7(w)qu(w) is perpendicular to Q(w) and
the cause of PMD depolarization. In a first-order ap-
proximation both A7 and q are frequency independent,
which may induce the pulse widen or two polarized modes
time displacement. second-order effects are represented
by the linear DGD frequency dependence Ar,(w) and
by a linear PSP rotation with frequency dependence
qu (w). A7, (w) may induce the pulse evolved into disper-
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sive waves or time displacement of two polarized modes.
q. (w) may induce the two polarized modes coupling ran-
domly and lead to pulse power overshoot or pulse energy
receded.

Now we use the Jones matrix (JME) method to eval-
uate these PMD components. The fiber is represented
by lots of 2 x 2 complex transfer matrix of T(w) =
e~ (@tif(@)*M(w), where a and 3 are the fiber atten-
uation and the mean propagation constant, respectively.
Here we use the conventional model of PMD in fibers,
which is modeled as a cascade of many small segments N
with constant birefringence. Assuming all the segments
have the identical length h;, which is the mode-coupling
length. The orientation # of the birefringence and DGD
varies randomly without correlation between adjacent
segments, which satisfied with uniformity and Gaussian
distribution, respectively. Then the sum of JME can be
gotten as!®!

M(w) = 1:[ M;(w) = ljf[Ri_l(w)Di(w)Ri(w)
SIS ) ()

cosf; sinb;
X < —sinf; cosb; ) ’ (3)

where R(w) is the rotating matrix of PSP and D(w) takes
into account the different propagation speeds on the two
PSPs. k = j(wAT/2 + ¢;), ¢; is perturbation of tem-
perature which is uniformly distributing. For one seg-
ment DGD A7 = Ap'h;, AB' is inverse group velocity
difference between the polarization components. After
a number of randomly oriented segments, we can obtain
the statistical average of the squared DGD as (A7?) =
ApB"?hiz. Since the DGD is a stochastic variable with
a Maxwellian distribution function, the relation between
its average and square average is (A72?) = (A7)237/8.
Usually, this is incorporated in the PMD coefficient
of the fiber which defined as the average DGD per

cos b;
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square root transmission distance: Dy = (AT)/V/2z =
AB'\/8hi /3. So k = j(1/37/8DL\pwvhi/2 + ¢;).

From the JME method, we can analyze the statistical
characteristics of PMD components. But when we con-
sider the PMD effects on the pulse of linear or nonlinear,
the coupled nonlinear Schrédinger equations (CNLSE)
must be also applied. The propagations of orthogonal po-
larized optical pulse components U and V' in a dispersion-
managed line are described in constantly birefringence
fiber by!!!

(OU | L OU\ | d(Z) 9*U
i <aZ +5gaT> + =57 +Q(UP +m|V[*)U
+%U*V2 exp(—4iABZ) = 0, (4a)
v LAV | d(Z) 8V
(B—Z—aw)+ D +QUVE +m UV
+%V*U2 exp(—4iABZ) =0, (4b)

where U and V are the x and y components of normal-
ized electrical field, 6, = AB'Lp/2Ty. We have used

the common soliton normalizations Z = , T = To
2

Q(Z) = vexp(2GoZ), where Lp = %g— is dlspers,lon

length, B» and 7 are group velocity dispersion (GVD)
and nonlinear coefficient respectively, Ty = to/1.665 for
Gaussian pulse, #g is full pulse width at half of maximum
power, Gy is gain of amplifier. d(Z) = —fB2(2)Lp/T§ is
the normalized varying group-velocity dispersion param-
eter in dispersion managed links, m represents coupling
parameters between U and V', which usually equals to 3/2
for linear polarization fiber. The terms of exp(—4iABZ)
can be ignored under the condition of pulse width ¢y > 1
ps. From the Eq. (4), the d; dependent or independent
(6 = 0) on frequency may 1nduce the pulse components
tlme delay and let time displacement of pulse two polar-
ization modes, which can be seemed as effects of second-
order or first—order PMD. Term included m factor may
induce the two polarized modes coupling such as second-
order of PMD effects. But owing to a nonlinear binding
force of XPM that keeps their polarization components
together, the soliton can withstand this splitting with
moderate PMD. For DMS having the varying dispersion
d(Z), the novel mechanism of DMS is that they can trap
some part of the radiation!®.

Now we consider that the pulse transmits one segment
of constant birefringence fiber to others, the Jones ma-
trix must be included. The approach of combining Egs.
(3) and (4) is named as so-called coarse-step approach!!l.
This approach presupposes that polarization effects like
repolarization are dominated but nonlinearity and dis-
persion play no significant role in these effects, which
is reasonable in modern-day dispersion-managed systems
because the local dispersion is large and the average dis-
persion is kept small. The new orthogonal polarized op-
tical pulse components can be expressed as

M | T ®)

We consider a dispersion-managed link made of an ar-
rangement of [y = 35 km anomalous dispersion fiber D,
= 17 ps/(nm-km) and I3 = 5 km of normal dispersion
fiber Dy = —118.2 ps/(nm-km), yielding an averaged
dispersion of D = 0.1 ps/(nm-km), and assuming they
have same loss and Kerr coefficients, a = 0.2 dB/km,
ne = 3.2 x 1072° m?2/w, Aerr = 50 um?. When we simu-
late the statistic of PMD, let | = 160 km, N = 1000, and
the wavelength range from 1500 to 1580 nm. For simplify
considering, we simulate the characteristic of statistical
PMD, the z, = 0.01 km and h; = I/N = 160/1000 = 0.16
km. In long haul distance, we adopt the step h; = z,=
0.1 km. To obtain adequate resolution in simulating Ar,
and q,, we use the interleave steps of wavelength of 0.002
nm. DYy is valued with 3, 1, 0.5, 0.3, and 0.1 ps/km'/2.
For (A1) AX < 1.0 ps-nm, let JME step size be 0.008 nm.
We now investigate the propagation of Gaussian pulse of
to = 5 ps, bit duration at 40 Gb/s in the system men-
tioned above with coarse step approach and assuming
that the effects of dispersion slope are neglected.

Figure 1 shows the statistical distribution of DGD. It
can be seen that the DGD has a Maxwellian distribu-
tion, and the mean DGD is 42.477 ps. The DGD value is
so big because the dispersion management link is a up-
grading system on the large PMD value common fiber.
Figure 2 is the DGD and PCD varying with wavelength
in 1500—1580 nm, which is the first and second-order
PMD characteristic values. It can be seen that the PCD
has larger than 420 ps/nm at some wavelengths, about
10 times DGD which is the same as the Refs. [4] and [5].
It must considere not only the first-order PMD but also
the second-order PMD compensated in so larger PCD
value system, particularly in 40 Gb/s system. Figures
3(a), (b), (c), and (d) are the statistical distributing of
PCD, |qu|, A7, and Q, , the root mean square (RMS)
values are 161.8 ps/nm, 29.8276 ps, 407.15 ps/nm, and
1186.3 ps?, respectively, but A7, has a zero mean value.

<AT2>2 / ((A7,)?) is about 27.0804 + 0.2895 consisted

with the theory results®! by other approach, which may
prove our right simulating. From those figure, we can
get

VA2 )/ (A7) = 0.6423 £ 0.0053 < //>/<AT>

= 0.2242 + 0.0041,

(P mean DGD:42.477 ps
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Fig. 1. Statistical distribution of DGD. Solid curve:
Maxwellian PDF.
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Fig. 3. Statistical distributions of PCD (a), |qu| (b), A7y (c),
and Q.1 (d). Solid curves of (a) and (c) are sech® probability
density functions (PDFs).

\/W/ (AT)? = 0.0891 £ 0.00221/{|qu|*)/ (AT)

= 0.7102 £ 0.0089.

The statistical distributing of both PCD and Ar, is
the curve of sech?, which is similar to the energy density
of soliton. When we know the DGD, all of the vectors
of second-order of PMD can be computed from above
relations. The first-order and second-order PMD which
may induce the pulse widen, energy recededs and time
displacements of two polarized components are described
in Figs. 4 and 5. Figure 4 is evolution of the normalized
pulse energy and width of DMS along the normalized
distance for different PMDs. Figure 5 is evolution of

mean square of time displacement of DMS two polar-
ization modes along the propagation line for different
PMDs. It can be seen that PMD affects the energy and
width of DMS distinctly. For example, when Distp =1
ps/km'/? and the transmission distance 24 x 195 = 4680
km, the pulse energy is 0.2 time of initial value, and pulse
width is 5 times of initial value. Though these results
have favorable performance than the linearly systems or
common soliton systems!] but may be very serious in
high-speed transmission system, in which the bit slot is
commonly 5 time to width of soliton. But in DL, =
0.1 ps / km'/2, the PMD cannot hardly affect on DMS,
which is very like with conventional soliton®l. This sit-
uation is the same as evolution of mean square of time
displacement of DMS two polarization modes. So, we
must consider some control instrument in this high speed
and long distance transmission system at D&Y > 0.3
ps/km'/2. Figure 6 shows that the DMS can be more
effects restraining the PMD inducing time displacement
than linear pulse. The scheme of DMS will be more im-
portant in high speed and long distance communications.
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Fig. 4. Evolution of the normalized pulse width and energy
of DMS along the normalized distance for different Dp3ip.
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Fig. 6. Evolution of mean square of time displacement of two

polarization modes (DMS and linear pulse) along the propa-

gation line for PMD value D = 0.1 ps/km1/2.

In the all, the results had declared that the statistical
characteristics of PMD in DMS transmission systems are
similar in linear and common soliton systems, but the
DMS can restrain the PMD effects more effectively than
common systems. We must consider some control in-
strument at Dt > 0.3 ps/km'/? in high speed such as
40 Gb/s and several thousand kilometers systems. The
results of coarse-step approach are very consistent with
other simulating method and theory results!"]. This
means that coarse-step approach can not only simulate
the statistical characteristics of PMD, but also can com-
pute the nonlinear pulse characteristic of transmission
evolution affected by PMD, such as timing and energy
jitters. The presented results are very useful to simplify

the measurement of second-order PMD and instructively
revealed degree of PMD effects in DMS systems.
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