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Modulation instability of broad optical beams in
nonlinear media with general nonlinearity

Hongcheng Wang (X44&) and Weilong She (#E k)

State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275

Received June 13, 2005

The modulation instability of quasi-plane-wave optical beams is investigated in the frame of generalized
Schrédinger equation with the nonlinear term of a general form. General expressions are derived for
the dispersion relation, the critical transverse spatial frequency, as well as the instability growth rate.
The analysis generalizes the known results reported previously. A detailed discussion on the modulation
instability in biased centrosymmetric photorefractive media is also given.
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During the past decade or so, optical spatial solitons
have been the focus of considerable attention!' 3. Much
progress has been made in the recent research, includ-
ing the discoveries of new nonlinear materials that can
support spatial solitons!*~''1. When the nonlinear re-
fractive index deviates from Kerr nonlinearity, it seems
very interesting to employ a more general form of the
intensity-dependent nonlinearity and thus the propaga-
tion of the solitary beam should obey the generalized
nonlinear Shrédinger equation (GNLSE), which has been
considered in some papers for analyzing the properties
of spatial bright, dark, and grey solitons!'>3]. On the
other hand, soliton occurrence is always in connection
with the modulation instability (MI), which is a univer-
sal process that is inherent to most nonlinear wave sys-
tems in naturel™* 18, Owing to MI, small amplitude and
phase perturbations in space tend to grow exponentially
and a broad optical beam disintegrates to filament. It
usually occurs in the same parameter region where soli-
ton occurrence is observed, and thus is considered as a
precursor of soliton formation. To date, theoretical and
experimental researches on MI have been presented for
Kerr medial**! and biased photorefractive crystals?—18],
However, MI in biased centrosymmetric photorefractive
medial'?! still remains an open problem. In this letter, a
linear stability analysis is presented to investigate the MI
for the GNLSE. General formulas for both the dispersive
relation and the instability gain are derived. Finally, we
use the general results to discuss the propagation of a
broad beam in a biased centrosymmetric photorefractive
medium under the steady-state condition and give a de-
tailed analysis of MI in this kind of media.

As is well known, the propagation of (1+1)-dimensional
quasi-plane-wave optical beams in a nonlinear medium
can be described by the GNLSE under the condition of
slowly varing envelope approximation!'?'3] namely

Ou(z, z) iBQU(x,Z)
o2 2k Ox?

+ £ (Jul,2)F ) ulw,2) =0, (1)

where u(z, z) is the slowly varying complex electric field
amplitude, k = kony, ko is the wave number in the vac-
uum, ny, is the linear refractive index of the medium, the
real function f(|u|?) = koAn(|u|?), and An is the photo-
induced index perturbation in a general form.
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For a broad plane beam, the envelope u is expected to
remain a constant over a large range of x. Therefore, Eq.
(1) has an exact solution of the form

w =1 exp(if(r)z), (2)

where the positive quantity r represents the dimension-
less optical beam intensity. To further investigate the
stability of this solution, we look for a solution of Eq.
(1) in the form of small-amplitude perturbation of the
background, e.g.,

u(w, z) = (r'/? + o (x, 2)) exp(if (r)z), (3)

where o(z, z) represents the weak complex perturbation
and |o(x,z)|> < r. Substituting Eq. (3) into Eq. (1) and
linearizing in o, we obtain

Oo 1 0% , o
z$+ﬁw+rf(r)(a+a)—0, (4)
where f'(r) = df/dz|,_,.. Usually, Eq. (4) has the fol-

lowing perturbation solution!20!

o(z,z) = ccos(T'z — Qzx) +idsin(lz — Qz), (5)

where I" and (2 are the wave number and spatial frequency
of the perturbation wave, respectively. Inserting Eq. (5)
into Eq. (4), and then we obtain the real and imaginary
part equations as

1
Fe+ —0%d =
c+2k d=0, (6a)

<2rf’(r) - ;’—Z> ¢—Td=0. (6b)

The nontrivial solutions of Eq. (6) exist only when the
dispersion relation is

r=-o (L0 -2, g

If ' has an imaginary part, the weak perturbation o
grows exponentially during the propagation of the broad
beam. Therefore, according to Eq. (7), an instability
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region only appears at f'(r) > 0 (i.e., this type of MI
should occur in the self-focusing medium) and the criti-
cal transverse spatial frequency of the perturbation Qcpi¢

is Qepit = [4rkf’(r)]1/2. For Q < Qcrit, the initial small
perturbation amplitude |o(x, z)| grows exponentially and
the MI takes place. Contrarily, when the medium is of
self-defocusing type, i.e., f'(r) < 0, the broad beam is
modulationally stable. Therefore, spatially localized so-
lutions with vanishing boundary conditions are possible
only for the case when the plane wave solution is modula-
tionally unstable, i.e., only for the focusing nonlinearity,
while the dark- or grey-soliton solution with nonvanish-
ing background can exist only for the case of the defocus-
ing nonlinearity. When the MI develops, the instability
growth rate is given by

(8)

i) 02\
k 452 '
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Obviously, the MI growth rate g(€) reaches the maxi-
[2rkf’(r)]1/2 and it is given by

Jmax = rfl(r)' (9)

The exponential growth of small perturbation always
leads to periodical filaments. This should be expected in
self-focusing medium. It can be physically explained in
this way: when a broad light beam carrying small noise
propagates in a self-focusing medium, those regions with
slightly higher intensity have slightly higher refractive in-
dices. During the beam propagation, the higher index
regions attract more light energy nearby and yield even
higher indices that attract more light energy farther. If
this self-focusing effect is stronger than the diffraction
effect, the light begins to localize. This more localized
light then causes the diffraction effect to grow. When the
diffraction effect finally balances the localization effect,
the MI patterns are formed.

The result given by Egs. (7)—(9) generalizes the known
results!*®17 for MI in biased photorefractive crystals
with and without photovoltaic effects. In the follow-
ing, we will use the general results, namely Egs. (7)—(9),
to give a detailed discussion on the MI in a biased cen-
trosymmetric photorefractive medium. In this case, we
havel619]

mum when Q =

1+p)°
() = tomg (10
(14 )
where Ang = 13 gesee (e — 1)° B2, /2 represents the

change in the refractive index driven by the dc Kerr
effect in the absence of light at a uniform external field
Eext, p is the dimensionless ratio of optical beam inten-
sity to dark irradiance far from the center, geer is the
effective quadratic electro-optic coefficient, €9 and ¢, are
the vacuum dielectric coefficient and relative dielectric
coefficient, respectively. When the quasi-plane-wave op-
tical beam has the form of Eq. (2), we have p = r. Sub-
stituting Eq. (10) into Eq. (7), the dispersion relation of
MI in this centrosymmetric photorefractive medium is
obtained as

2rAng 02
— 2 (A 1
< (1+7)ny 4k2>’ (

~

and the MI growth rate is

IQI\/

The above equation clearly shows that the MI gain is
possible when Ang < 0 (i.e., geft < 0). As an example,
we take the centrosymmetric photorefractive medium
to be potassium lithium tantalate niobate (KLTN).
The typical parametersl®! are A = 500 nm, ng = 2.2,
er = 4000, and Ang = —5 x 107* when Foyy = 2
kV/cm. Thus, we can plot the MI gain ¢(Q) as a func-
tion of Q/k for several values of r, as shown in Fig.
1. Obviously, the critical transverse spatial frequency
Qoit = k(—8rAng/ [np(1 -1-7“)])1/2 increases with the
intensity r monotonously. When Q < Qc.¢, MI will hap-
pen. The maximum MI gain gmax = —2rkAng/(1+7) as
well as the corresponding spatial-frequency also increases
with the light intensity r.

From Eq. (12), the MI growth rate also depends on Ang
and thus on the external applied electric field Feyy. Fig-
ure 2 shows the MI gain g(Q2) as a function of /& for four
different values of Fqxt when r = 1 and for the same other
system parameters given above. Obviously, the maxi-
mum MI gain gmay increases linearly with EZ2, and its
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Fig. 1. MI gain as a function of Q/k for r = 0.1 (solid line),
1 (dashed line), 5 (dotted line), and 10 (dashed-dotted line)
in a biased KLTN at Eexy = 2 kV/cm.
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Fig. 2. MI gain as a function of Q/k for Fex; = 1 kV/cm (solid
line), 2 kV/cm (dashed line), 3 kV/cm (dotted line), and 5
kV/cm (dashed-dotted line) in a biased KLTN at r = 1.
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associated spatial frequency increases linearly with Feyy.
This dependence allows one to externally control the spa-
tial period of the generated filaments.

In conclusion, we have shown the modulation insta-
bility of broad optical beams within the frame of the
nonlinear Schrédinger equation with a nonlinear refrac-
tive index change of a general type. General expres-
sions are derived for the dispersion relation, the critical
transverse spatial frequency as well as the MI growth
rate. It is found that MI region appears only in the
self-focusing medium. When the nonlinear medium is
of self-defocusing type, the modulation is stable. No MI
is observed and thus dark- or gray-soliton solution with
nonvanishing background is possible to form. We make a
detailed discussion on the MI in a biased centrosymmet-
ric photorefractive medium. In this type of media, the
MI growth rate increases monotonously with the external
bias field and the normalized optical beam intensity. It is
worthy of mention that MI is not restricted to nonlinear
optics and therefore the results obtained in this letter are
also very useful in other nonlinear physics such as fluid
dynamics, plasma physics and protein chemistry, etc..
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