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The characteristics of solitons with a localized impurity in Bose-Einstein condensates (BECs) are inves-
tigated with numerical simulations of the Gross-Pitaevskii (GP) equation, the effects of the impurity on
BEC solitons are discussed, and the atom population transferring ratios between the two BECs as time
goes on are analyzed. It is found that population transfer depends on the impurity strength and the

parameters of the system of BECs.
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A convenient model to study the mean-field dynam-
ics of Bose-Einstein condensates (BECs) is the Gross-
Pitaevskii (GP) equation, which has the form of a three-
dimensional (3D) nonlinear Schrédinger equation with
an external trapping potential. In the case when the
confinement for two of the three spatial dimensions is
much stronger than for the third dimension, the GP equa-
tion can be reduced to an effective quasi-one-dimensional
(ID) GP equation. This is in contrast to a truly 1D
mean-field theory which requires transverse dimensions
on the order of or less than the atomic interaction length.
The recent trapping of a BEC in optical and magnetic
traps demonstrates that a quasi-1D BEC is experimen-
tally realizable. A variety of other experiments are also
modeled by the 1D GP equation with an external po-
tential. It is well known that the GP equation sup-
ports solitonic solutions. Dark solitons (with positive
scattering length) of Bose condensed atoms were exper-
imentally observed a few years ago, while bright soli-
tons (with negative scattering length) have been detected
only very recently with “Li using an optical red-detuned
laser beam along the axial direction of the sample to im-
pose a transverse (radial) confinement, and studied in
1D models!* —6!,

Contrary to the 1D case, in two and three dimensions,
stable bright solitons do not exist in a flat potential.
However, if an external harmonic potential constrains
the motion in two dimensions, such 3D soliton states ex-
ist but only below a critical number N, of bosons. The
value of N, depends on the transverse confinement. More
precisely it is proportional to the ratio of the transverse
harmonic length to the scattering length![7].

The dynamics of a two-mode BEC of a mean-field dy-
namical instability are investigated recently. Using a den-
sity matrix formalism rather than the conventional wave-
function methods, Anglin and Vardi derived an improved
set. of equations of motion for the mean-field plus the
fluctuations, and showed that the leading quantum cor-
rections appeared as decoherence of the reduced single-
particle quantum statel®l. Salmond et al. considered a
two-component BEC in two spatially localized modes of
a double well potential with periodic modulation of the
tunnel coupling, treated the driven quantum field using a
two-mode expansion, and showed that the corresponding
semiclassical mean-field dynamics can exhibit regions of
regular and chaotic motion!®!.
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The mean field of a BEC with a delta function potential
has been investigated, and the potential may be used to
describe the interaction of a soliton with “artificial” im-
purities. Such an impurity could be induced with sharply
focused laser beams intersecting with the condensate in
experiments. It models the response of the condensate
to an impurity of a length scale smaller than the healing
length, which could be realized by a tightly focused laser
beam, by another spin state of the same atom, or by any
other object, such as another alkili atom, confined in an
optical trap!'®:11],

It is useful to transfer some of the techniques and in-
sights from the fiber optics and the directional fiber cou-
pler to the field of BEC dynamics!'2~15]1, In this letter,
the characteristics of solitons with a localized impurity
in BECs are investigated, and some novel results are ob-
tained.

The basic equation governing the dynamics of BECs in
confining potentials is given by the GP equation

ou 1
ja+§v2u+4|u|2u+Vu:0, (1)
where u is the condensate wave function, and p? =
r? + y2. V(z,y,2) is the normalized confining poten-
tial of the traps.

Two traps are separated from each other by a distance
d. If the transverse confinement is much stronger than
the confinement in the z direction and the transverse
shape of the wave function does not change much in
each trap, which implies that the confinement of atoms
in two transverse (radial) directions is very strong and
hence the transverse part of the order parameter is taken
as being “frozen” to the ground-state wave function of
the transverse confining potential, which has a Gaussian-
type form for a two-dimensional (2D) harmonic oscillator
potential. We will assume that the potential in z direc-
tion is weaker than the nonlinear interaction. Then the
solution of Eq. (1) reads as!'0]

upzt) = f(p+ S+ falp— D (2)

where p = 0 occurs in the middle of the two traps. f_
and f satisfy the eigenvalue problem of the 2D isotropic
harmonic oscillator, —1V3 f + $pf = v,f. Its ground-

state solution is fo(p) ~ e P12, Multiplying Eq. (1) by
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f* and integrating to eliminate the p result in the follow-
ing coupled 1D equations:

% + 18211'1
Y 2 022
+VI(Z)’LL1 + E[)’Ltl + K’LL2 = 0,
Ous  10%us
ot T 37022
+VI(Z)’LL2 + E[)U2 + K’LL1 = 0, (3)

+ 2 |U1|2 U1

+ 2 |U2|2 (15}

where Ej is the ground-state energy and K is the linear
coupling coefficient arising from overlaps of the trans-
verse parts of the wave functions. V'(z) is the nor-
malized confining potential of the traps in the longi-

tudinal direction (z direction). N; = foo |u1|2dz and

— 00
Ny = ffooo |U,2|2d2’ are the respective numbers of atoms in
each trap, and N = N; + N, is the total number of atoms
in two traps (a conserved quantity). The Eg term can be
eliminated by the transformation u; — wu;exp(—jFEot)
(1 = 1,2). The coupled BEC system can be described by
the following two coupled nonlinear Schrédinger equa-
tions:

_8u1 18211,1 2 !

i3 Y352 +2ur]" ur + V' (2)ur + Kua =0,
,Bug 18211,2 2 !
i+ 5 g0 2wl us + V' (2)us + Kuy = 0. (4)

In order to study the characteristics of BEC solitons
with a localized impurity in the framework of Eq. (4), it
is convenient to decompose the external potential V'(z)

[11]
as

V'(2) = Uecon + bd(2), (5)

where Uy is the conventional time independent trap-
ping potential, which is assumed to be smooth and slowly
varying on the soliton scale, and the additional sharp po-
tential bd(z) accounts for an impurity localized in space
at the point z = 0, described by a Dirac d(z) function.
The parameter b in Eq. (5) which measures the impu-
rity strength is assumed to be small and may take either
positive or negative values for repulsive or attractive im-
purities, respectively.

In order to treat analytically the effect of the impurity
on BEC solitons, the conventional trapping potential is
assumed to be the external potential:

Ucon = %U2Z2 + %SnQ (xa k)a (6)
where the two terms represent the external magnetic
trapping (MT) and the optical lattice (OL) potential
respectively. MT is cylindrically symmetric with the
harmonic frequency in the radial direction, and its geom-
etry is cigar-shaped. v is the coefficient of the trap in the
longitudinal direction (z direction). The OL trap cre-
ated by interference patterns from multiple laser beams
allows for a systematic study of the dynamics of coherent
structures in the presence of periodic potentials. sn(z, k)
is Jacobi’s elliptic sine (we always assume k — 0 for sim-
plicity in this letter), V5 is the amplitude of potential.

We have used a split-step Fourier method to integrate

the GP equation (4). In Figs. 1—4, we plot evolution

of atom density (namely, |ui|> and |us|”) of each trap
versus time by direct numerical simulation. The initial
input pulses are uy(t = 0) = y/N/2cosasech(z) and
uz(t = 0) = \/N/2sinasech(z) (o = /6 for simplic-
ity). Except the especial indications in figure captions,
the simulation parameters are selected as the coupling
coefficient K = 1, the amplitude of potential 0.1, the
coefficient of trap v = 0.1, the total number N = 6,
and the impurity strength b = 0.01. In these figures, we
find that the impurity strength plays an important role
in the switching and self-trapping characteristics of the
solitons. The impurity potential deforms evolution of the
condensate wave function, and change characteristics of
the system. For example, the large impurity may lead
to the splitting of solitons and appearance of multi-peak
pulse. Switching alternation in the periodic manner dis-
appears and becomes disorderly as time goes on when
the impurity strength becomes large.
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Fig. 1. Evolution of atom density of each trap versus time.
The impurity strength b = 0. (a) |u1]?; (b) |u2|’.
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Fig. 2. Evolution of atom density of each trap versus time.
The impurity strength b = 0.005. (a) |u1|?; (b) |uz|’.
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Fig. 3. Evolution of atom density of each trap versus time.
The impurity strength b = 0.01. (a) |u1|*; (b) |us2|>.
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Fig. 4. Evolution of atom density of each trap versus time.
The impurity strength b = 0.1. (a) |u1|*; (b) |ua|>.



May 10, 2005 / Vol. 3, No. 5 / CHINESE OPTICS LETTERS 307

In order to further demonstrate the effect of the impu-
rity, we introduce the population transferring ratios

R(t) = w M)

We plot the changes in population transferring ratios
versus time in Figs. 5—8. The initial input pulses and
the simulation parameters have been selected except the
especial indications in captions. We can see the effects of
the parameters on characteristics of the solitons. For ex-
ample, it is found that the behavior of the system would
be sensitive to the change in the OL potential and linear
coupling coefficient in presence of impurity potential,
but insensitive to the change in the external magnetic

trapping.
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Fig. 5. Changes in the population transferring ratios versus
time with different impurity strengths.
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Fig. 6. Changes in the population transferring ratios versus
time with different coefficients of trap.
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Fig. 7. Changes in the population transferring ratios versus
time with different amplitudes of the potential.
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Fig. 8. Changes in the population transferring ratios versus
time with different linear coupling coefficients.

In summary, the switching and self-trapping charac-
teristics of bright solitons with a localized impurity in
BECs are investigated, and the evolution of atom den-
sity of each trap as time goes on is discussed. It is found
that the impurity strength plays an important role in the
switching and self-trapping characteristics of the solitons.
The impurity potential deforms evolution of the conden-
sate wave function, and changes characteristics of the
system. The large impurity may lead to the splitting of
solitons and appearance of multi-peak pulse. The popula-
tion transfer between two BECs depends on the impurity
strength and the parameters of the system.
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