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A new method based on finite-difference time-domain
scheme for computing the band structure of
2D photonic crystals

Juhong Zou (4fE#), Zheng Liang (£ it), and Zongjun Shi (£ % %)
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A finite-difference time-domain (FDTD) scheme in Cartesian coordinate system is developed to analyze the
guided-wave properties of a class of two-dimensional (2D) photonic crystals formed by square or triangular
arrays of metal posts. With the application of the periodic boundary condition, the computing domain can
be restricted to a unit cell. A modified Yee's grid is introduced to calculate the dispersive characteristic
in the case of triangular lattice. As examples, several classic structures are analyzed, numerical results are
compared with the results from other methods, and the agreement is found to be very good. This method
can also be extended to the three-dimensioned (3D) case.

OCIS codes: 000.4430, 310.2790.

Photonic crystals, typically built of periodic metallic or
dielectric lattices, have shown tremendous potential ap-
plications both in physics and engineering communities.
The absence of electromagnetic modes inside a photonic
band gap (PBG) provides us an opportunity to shape and
mold the flow of light. Two-dimensional (2D) photonic
crystals have been used in many applications such as the
feedback mirror in laser diodes!!), the fiber cladding!?!,
mode selective devices which can be used in high power
microwave (HPM) devices®%, etc..

A variety of methods have been used to calculate
the dispersive characteristic of the photonic crystal.
For analysis of PBG cavities, finite-element, codes such
as HFSS can do a good jobl’l. For analysis of the
guided-wave properties in PBG structure, the plane
wave expansion method!®!, multiple-scattering theory!” !
(Korringa-Kohn-Rostoker method), coordinate-space
finite-difference method®'% have been used. Due to the
convergence problem, the plane wave expansion method
is applicable only to the lattices with the size of conduc-
tors much smaller than the lattice period.

Finite-difference time-domain (FDTD) is also a proper
candidate to analyze the guided-wave properties of pho-
tonic crystal. To reduce the computation, periodic
boundary condition was applied to restrict the com-
puting domain to a unit cell’, Qiu and He presented a
FDTD method*?!, which uses a square mesh to calculate
the dispersive characteristics of the photonic crystal and
a nonorthogonal mesh in a nonorthogonal coordinate
system in the case of triangular lattice.

Fig. 1. Scheme of PBG structure representing (a) square lat-
tice and (b) triangular lattice of perfectly conducting cylinders
with radius of r and spacing a.
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In this paper, we develop a method based on FDTD
scheme in Cartesian coordinate system for both square
lattice and triangular lattice, which is more simple and
efficient than the nonorthogonal mesh'!l. A modified
Yee’s grid is introduced in the case of the triangular
lattice. The numerical method is employed, numerical
results are presented and the comparison is made be-
tween our results and the results from other methods.

The photonic crystal formed by square or triangular ar-
rays of metal posts is considered here, namely the square
lattice (Fig. 1(a)) and the triangular lattice (Fig. 1(b)),
for these kinds of structures are in considerable interest
recentlyl3:4:6:9,10,12]

Since the structure of the photonic crystal is periodic,
the field should satisfy the Bloch theory so that

E(r) = E(r)e*jk'r,H(r) = H(r)e*jk", (1)

where E(r), H(r) are periodic functions in space, and
satisfy

E(r+L)=E(r),H(r+ L) = H(r), (2)

where L is the lattice vector. Since the system is ho-
mogeneous along the z-axis, we can set k, = 0, which
obviously dose not affect the generality of the results.

Substitute (1) into Maxwell’s two curl equations, we
get
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Fig. 2. Grid in a period for square lattice.

Considering TM modes first, in the case of square lat-
tice, we discretize the entire period with N x N mesh
shown in Fig. 2. This is a standard Yee’s grid. To apply
the period condition shown in Eq. 2, electric boundary
is located in one side (solid line) and the other side is set
to be magnetic boundary (dashed line).

For triangular lattice, we slightly modify the standard
Yee’s grid to discretize one period with a N, x N, mesh
(Fig. 3), in which we take Ay/Az = tan(a), and denote
each grid point by

(i,4) = (1Az, jAy). (4)

The discretization of Eq. 3 becomes
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To descretize the periodic boundary condition, we can
treat it in the same way as in square lattice. And in the
case of TE modes, we can treat it in a similar way.

So far, with the application of periodic boundary con-
dition, we can restrict the possible values of &k, to the
irreducible Birllouin zones of the reciprocal lattices shown
in Fig. 4.
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Fig. 3. Grid in a period for triangular lattice.

Fig. 4. Reciprocal lattices and Brillouin zones for (a) square
lattice and (b) triangular lattice (irreducible Brillouin zones
for each type of lattice are shaded).

When begin interative, we preset the value of k , place
the Gaussian impulse at one point as excitation source,
and another point is chosen to be the sense point to
record the field information every time step. After the
FDTD scheme, we need to transform the calculated field
information from the time domain to the frequency do-
main by Fourier transform. The peaks of the spectral
distribution correspond to the location of the eigen fre-
quencies for the given & .

Now we present our FDTD numerical results and com-
pare them with the results from other methods. In all
the computation, the total number of time steps is 5000
with each time step At = 1/(2¢).

In the case of square lattice, choose N = 40, the radius
of the metal posts is set to be R = 0.2a, where a is
the lattice constant. Figure 5(a) shows the dispersion
characteristics for several lowest TM modes as the wave
vector changes from I' point in the Birllouin zone shown
in Fig. 4(a) to X, and then to M. There is a global band
gap between the first and the second TM modes. Figure
5 (b) shows the dispersion characteristics for several low-
est TE modes as the wave vector changes from I' point
in the Birllouin zone shown in Fig. 4(a) to X, and then
to M. The first and second TE modes are intersecting
and there is no global band gap.

In the case of triangular lattice (o = 60°), choose
N, = 40,N, = 80, the radius of the metal posts is
set to be R = 0.2a, where a is the lattice constant.
Figure 6(a) shows the dispersion characteristics for sev-
eral lowest TM modes as the wave vector changes from



August 28, 2005 / Vol. 3, Supplement / CHINESE OPTICS LETTERS

12 S 12
= )
& S
(=]
Soa— S04
. @ . 0
r x M T r x M T

Fig. 5. Plots of the several lowest normalized eigenmodes ver-
sus the wave vector k; for TM (a) and TE modes (b) as k1
varies from I' point in the Birllouin zone shown in Fig. 4(a)
to X, and to M for square lattice.
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Fig. 6. Plots of the several lowest normalized eigenmodes

versus the wave vector k1 for TM (a) and TE modes (b) as
k.1 varies from I' point in the Birllouin zone shown in Fig.
4(b) to X, and to J for triangular lattice.

T point in the Birllouin zone shown in Fig. 4(b) to X,
and then to J. Figure 6(b) shows the dispersion charac-
teristics for several lowest TE modes as the wave vector
changes from I point in the Birllouin zone shown in Fig.
4(b) to X, and then to J. There is no global band gap
between the first and the second TM or TE modes.

All the results presented here are compared with the re-
sults from coordinate-space, finite-difference method%!,
the deviation between them is less than 1%.

In conclusion, an efficient method based on FDTD
scheme is presented to analyze the guided-wave proper-
ties of 2D photonic crystal. In the case of triangular lat-
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tice, we introduce a modified Yee’s grid to simplify the
compution, so that both square lattice and triangular lat-
tice cases can be solved in Cartesian coordinate system.
Results show that our code can be used to quickly and
accurately get the guided-wave properties of 2D photonic
crystal. Although here we only present the results of pho-
tonic crystal formed by arrays of metal posts, it can also
analyze the case of dielectric inclusions. Besides, this
method can be extended to 3D case. It can also be used
to analyze the guided-wave properties of slow wave struc-
ture (SWS) in HPM devices, and the scatter problem in
gratings.

J. Zou’s e-mail address is feeless@sina.com.
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