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Photon state-vector function
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The exclusive carrier of photonics is photon, which is a kind of microscopic particles so that obeys the
generalized Schrédinger equation, namely the motion equation for a photon. A novel state-vector function
that satisfies the equation with three quantum conditions has been constructed, which possesses not only
the energy and the momentum but also the angular momentum (spin) for a photon. The analyses of the
state-vector function indicate that the macroscopic polarization of light is how to relate with microscopic
parameters of a photon such as the probability amplitude and the phase.
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It is well known that the motion of all microscopic par-
ticle systems is governed by the generalized Schrédinger
equation in quantum mechanics!):

., 0 -
Zhadj (taf‘) = Hy (taf‘) ) (1)

where 9 (¢,7) denotes a complex function describing the
quantum state of a particle system, so that it is referred

to as the state function?. The notation H = E is the
energy operator, which is commonly called the quantum
Hamiltonian®l. Equation (1) indicates that the time-

derivative operator iha/at = H = E is equivalent to the

energy operator.
The relation between the energy E and the momentum
p p for a photon isE=¢-p. Substltutlng energy operator

=ih /Bt and momentum operator p = —ihV into the
relatlon, and operating on a vector function of At (t,7) ),

the Schrédinger equation for a photon, namely the mo-
tion equation for a photon, can be directly written as

m% ‘[f(t,f‘)> - —maﬂﬁ(t,m. 2)

The one-dimensional (1D) motion equation for a photon
has been given by!4

zh—‘Atz>:—ihc-%

A, z)> . (3)

We would name the solutions of Eq. (2) or (3) the
photon state-vector functions (SVFs), because they not
only describe quantum state for a photon but also possess
vector form. It was usually considered as the general so-

lution that is so-called plane wave in quantum mechanics
for Eq. (3)

-»(t’ Z)> - efi(wtfliz)- (4)

Besides the SVF (4) satisfies the normalization condition
<ff(t,z)‘ ‘/f(t,z)> = 1, it should satisfy the eigenvalue

equations of energy and momentum for a photon, respec-
tively.

hw /f(t, z)> , (5)

—m% ‘/f(t,z)> - hn‘ff(t,z)>. (6)
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The photon that is described with the SVF (4) possesses
the eigenvalues of energy and momentum E = hw and
p = hk, simultaneously. However, owing to lack of de-
scription about the angular momentum of a photon, the
SVF (4) is incomplete.
We have constructed a novel 1D SVF, which is ex-
A(2) = 5

pressed as
(1), Jia 1
7l e ()

—l-O'(j) _eiﬁ < _11 >:| X e—i(wt—nz)’ (7)

1 1 Ci(wt— >
- . Lo W Kz) = A > 8b
(4 o)) ()
are a pair of eigen-SVFs for a photon. In addition to the
energy eigenvalue F = hw and the momentum eigenvalue

p = hk, the pair of eigen-SVF's (8a) and (8b) possess the
eigenvalues S,y = +h and S,_ = —h for the spin angular

here

and

. o\ 18]
momentum operator S, = h ( ? OZ ) , respectively.
8. Ay (t,2)) = +1 | (1,2)) (92)
S, |4 (t,z)> _— ‘ff_ (t,z)>. (9b)

The eigen-SVFs ‘/ﬁ (t,z)> and

_(t,z)> satisfy
the normalization condition </f+ (t,z)‘ ‘}L (t,z)> =
<A’, (t,z)‘ ‘A’, (t,z)> - 1
orthogonality  condition <ff+ (t,z)‘ ‘/L (t, z)> =
<[L (t,z)‘ ‘/Lr (t,z)> = 0 each other. The real part

respectively, and the

of the eigen-SVF ‘fL (t, z)> could describe a wave given
by

g 1 1 —i(wt—Kz
A+(t,z):Re‘A+(t,z)>:Re{%(Z. )e (wt )}
= % [fcos (wt — K2) + jsin (wt — nz)] i
(10a)
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Suppose the z-axis is along the propagation direction of
light, Eq. (10a) represents the vector with the scalar

amplitude of 1/\/5, which is rotating anti-clockwise at an
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meanwhile Eq. (13a) can reduce to
AL (t,z) =L [fcos (wt — kz — )
V2 (13b)

angular frequency w as seen by an observer who looking
back at the light source. According to the stipulation
about polarization, such a wave is said to be left circu-

larly polarized (CP) light!®!, so that we call ‘fL (t,z)>
the eigen-SVF for left spin photon. In a similar way, we
call ‘/T_ (t, z)> the eigen-SVF for right spin photon, the
real part of which describes right CP light.

A_(t,2) = Re ‘/T_ (t,z)>

- - (10b)
= \/LE [z cos (wt — kz) — Jsin (wt — nz)] .

The general expression of the 1D SVF (7) also satisfies
the normalization condition

<[f(t,z)‘ ‘/f(t,z)> - [09]2
1)

It is clear from Eq. (11) that the real coefficients o’ and
(1)

o' are the probability amplitudes(”!, and a and 8 are
the phases for left and right spin photons, respectively.
The expectation value of the spin operator is

+ [09)]2 -1 (11

S, = <E(t,z) S, ff(t,z)>

(a$))2 - (09))2] : (12)

Just as Re‘fl} (t,z)> and Re‘fL (t,z)> describe the

waves of left and right CP lights respectively, the wave
of general light could be described with the real part of
the general SVF, which is given by

()
() e

) cos (wt — Kz — f)

:%[ag)cos(wt—nz—a +o

+L\;— [US}) sin (wt — kz —a) — o sin (wt — Kz — ﬂ)] .
(13a)
It is evident that the expectation value is S., =

while o_(:) =1and o =0 on Eq. (12), here all pho-
tons remain in the eigenstate of the spin operator with
the eigenvalue +7h, namely all left spin photons. In the

+7sin (wt — Kz — a)] .

It can be seen that Eq. (13b) is the same as Eq. (10a)
except for an inessential phase a, both of them describe

left CP light. In the case of 0'(+1) =0and o) = 1, the

expectation valueis S, = —% on Eq. (12), and the wave

of the light consisting of all right spin photons is given
by

A (t,2) =L [Zcos (wt — Kz — )

V2, (13c)

—gsin (wt — kz — B)|,

which describes right CP light. Supposing Usrl) (_1 ) =

\/5/2, the expectation value is S.o = 0 on Eq. (12), the

Eq. (13a) gives out
Ao (t,2) Re‘Aot > (t—HZ—MTa)

[ (222 470 (2]

(13d)

If the phase difference (8 — a) between each pair of left
and right spin photons is a constant, Eq. (13d) describes
linearly polarized light, the polarization orientation of

which makes identical azimuthal angle ¢ = (B%O‘), if

the distribution of the azimuthal angles is symmetrical
in range (—m, ), Eq. (13d) could describe natural light.
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