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A real-coded genetic algorithm for
distributed fiber Bragg grating sensor
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A real-coded genetic algorithm (RGA) for fiber Bragg grating (FBG) distributed sensing is presented.
The distributed strain fields along the fiber Bragg grating sensor (FBGS) are real coded into genes, and
the concept of elitism and simulated annealing are also included in this algorithm. Compared with the
binary coded genetic algorithm, this method is more simple and efficient. Only with the reflect spectrum
of distributed FBGS, the strain fields distribution can be exactly demodulated even in the regions with
significant strain gradients. The algorithm is a promising method for demodulating the distributed FBGS,
which can be used for structural failure analysis and structural damage identification.
OCIS codes: 050.2770, 060.2340, 070.4790, 130.6010.

From the earliest stage of their development, fiber Bragg
gratings (FBGs) have been considered excellent sensor el-
ements, suitable for measuring static and dynamic fields,
such as temperature, strain, and pressurelt). For quasi-
distributed strain sensing, the fiber Bragg grating sensor
(FBGS) is regarded as a point sensor and the strain dis-
tribution along the FBGS is averaged along the fiber axis.
But in some situation, such as local damage identifying
within a material system, it is important to derive the
strain distribution along fiber axis as to locate the re-
gions where strong strain non-uniformities occur. The
reflect spectrum of FBGS can be easily measured with a
conventional optical spectrum analyzer (OSA). When the
reflect spectrum of FBGS is derived, we can reconstruct
the period distribution which has a linear relation with
the strain distribution along the fiber axis. The simplest
technique is the intensity spectrum based approach (ISB)
method?!, but it is only valid for monotonically vary-
ing strain fields and not suitable for strain fields with
great gradient. Other reconstruct algorithms such as
the Fourier transform techniquel®], the iterative Gel’fand-
Levitan-Marchenko method!¥], the time-frequency signal
representations!”] and the Layer peeling techniqueslf!,
but all these methods needs all the information (includ-
ing phase information) of the reflect spectrum of FBGS,
which limits their use in distributed strain sensing. Re-
cently some heuristic approaches have been developed
for the solution of the FBG inverse problem![-8l. Skaar
et alll proposed a fiber grating synthesis method based
on genetic algorithm that is binary coded and with low
running speed. Here we present a new real-coded genetic
algorithm (RGA) with high running speed that is suit-
able for FBG distributed strain sensing.

The algorithm is started with a set of solutions (strain
distributions, represented by chromosomes) called popu-
lation. The strain distributions along the fiber axis are
divided to M segments and coded as genes of chromo-
somes. Within each segment, the strain distribution is
regarded as a const. By increasing the segment num-
ber M, the strain distribution along the FBGS can be
approximated well. Then RGA algorithm is used to re-
construct the strain distribution along fiber axis with the
reflect spectrum of FBGS.

The procedure of our RGA algorithm is summarized as
follows.

Step 1: Get the reflect spectrum of FBGS. (Here we simu-
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late the spectrum of FBGS using the well-known transfer
matrix method[® just for illustration, in practical situa-
tion, it can be derived from OSA.)

Step 2: Generate random population of M chromosomes
whose genes are represented by strains, and the genes are
in the predefined strain range:

g €[4B] (i=1,---,M), (1)

where A and B are the lower bound and upper bound
of strain. And the strain induced non-uniform period A;
distribution is

Ay =Ao[14+ (1 —pe)ei], (2)

where Ag is the grating period without strain, p, ~ 0.26
is the strain-period relation coefficient of FBGS.

Step 3: Evaluate the fitness of each chromosome in the
population and return the best solution in current pop-
ulation. If the end condition is satisfied, terminate the
algorithm. The fitness formulation is chosen as

1
F - 29
Z |Rcalc(>\m) - Rtarg(Am”

(3)

where Reaic (Am) and Riarg (Ar) are the calculated and
target reflect spectra of FBGS respectively, A\, is the m
simulated wavelength.

Step 4: Create a new population by repeating the fol-
lowing genetic operator until the new population is com-
plete.

1. Selection: the traditional roulette select method
is used with a slightly modification with the annealing
process, i.e., the fitness used by the roulette selection is
recalculated as

F
F' = — 4
exp [T] : (4)
T =Ty x 0.9919en=1), (5)

where T is the annealing temperature, T is the initial
temperature, and gen is the current generation number.

2. Crossover: new offspring are generated using a con-
ventional arithmetic crossover operator with a crossover
probability p, :

O =rand - P, + (1 —rand) - P, (6)
Oz =rand - P, + (1 —rand) - P, >
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where O, Oy and P;, P are offspring and parents re-
spectively, rand is a random number between 0 and 1.

3. Mutation: use a multi-non-uniform mutation opera-
tor with a mutation probability P, mutate new offspring
at every genes non-uniformly. At each gene position i, we
have

[ ei+r-¢(gen,B—¢;) rand=0 )
T ei—r-o(gen,ei—A) rand=1 >
¢ (gen,z) = [1 R z, 8)

where r is a random number in the range of [0, 1], rand
is a random integer 0 or 1, gen is the current annealing
generation, mgen is the max generation or terminate
condition.

4. Elitism selection: if the highest chromosome’s fitness
in current generation is lower than that of last generation,
the chromosome with the highest fitness from previous
generation replaces that with the highest fitness of the
new generation.

5. Use new generated population for a further run of
algorithm. Go to step 2.

The RGA algorithm is used to demodulate two FBGs
for demonstration, one with a linear strain distribution
and the other with a discontinuous strain distribution.
The simulation results are shown in Figs. 1-4. From
the simulation results, we can see that the reconstructed
strain profiles and the reflect spectra coincide with those
of the FBGS’s very well.

In conclusion, we developed a RGA, which is suitable
for FBG distributed sensing. Only with the reflect spec-
trum of distributed FBGS, the strain fields distribution
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Fig. 1. Reflect spectrum of FBG with a linear strain distri-
bution and that of the RGA reconstructed.
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Fig. 2. Linear strain distribution of FBG and that of the
RGA reconstructed.
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Fig. 3. Reflect spectrum of FBG with a discontinuous strain
distribution and that of the RGA reconstructed.
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Fig. 4. Discontinuous strain distribution of FBG and that of
the RGA reconstructed.

can be exactly demodulated even in the regions with sig-
nificant strain gradients. And the numeric simulation
results proved it to be an effective method for FBG dis-
tributed sensor demodulation.
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