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Bragg grating spectra in a multimode optical fiber
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The mode coupling in multimode fiber Bragg gratings (MMFBGs) is analyzed by using the coupled-mode
theory. The reflection spectra of MMFBGs excited by one mode and two modes are simulated. The results
of the calculation show that MMFBGs have multiple reflection peaks due to the coupling between the
same modes in counter-propagating direction and the coupling between the adjacent modes in counter-
propagating direction, and the spectra depend on excitation conditions of the bounded modes, such as

mode power and mode number.
OCIS codes: 050.1950, 060.2340.

Optical fiber phase gratings formed by ultraviolet
irradiation!!! have been developed into a critical com-
ponent for many applications in fiber-optical communi-
cation and sensor systems since the first observation of
in-core fiber grating filtering by Hill et al. in 1978[2.
Fiber gratings in single-mode optical fibers have been
well studied®. Recently, Mizunami et al. provided ex-
perimental reflection spectra of MMFBG and brief expla-
nation from the view of the phase matching condition[*.
However, detailed spectral analysis of MMFBG has not
been reported yet. Here we analyze theoretically the
spectral characteristics of MMFBG by considering two
modes coupling in the gratings.

The fiber grating is an optical diffraction grating. Its
effect upon a light wave incident on the grating at an
angle 0, is shown in Fig. 1. When the propagation con-
stants #; and (B, satisfy the phase-matching condition of
the fiber grating: s = 51 + %’r, where A is the period of
the grating, the two corresponding modes couple to each
other efficiently.

Here we used the coupled-mode theory!®! to analyze two
modes coupling in MMFBG for simplicity. A MMFBG
has the structure:
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where ng=1.4545, ny=1.45, dng=2.2x 1073, a=4 ym, and
A=0.535 pym. At the wavelengths of around 1.55 um,
there only exists two bounded core modes LPy; and LPq;

in this fiber. The coupling between these two modes can
be described by
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where A(z) and B(z) are slowly varying amplitudes for
the transverse mode fields traveling in the +z and —z
directions, respectively, K is the transverse coupling co-
efficient. The longitudinal coupling coefficient K* has
been neglected in Eqgs. (2)—(5) since K# is much smaller
than K* for fiber modes. K* is given by
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where Ae is the perturbation to the permittivity, e is the
field pattern of the corresponding LP mode. For a small
index perturbation (dn << ng), we have Ae &2 2eqnodn
approximately. In Eq. (6), the LP modes are assumed
to be normalized such that
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Under the normalization (7), the power carried by each
LP mode is equal to |4,|> + | Bu|’.

This is an initial-boundary-value problem, where
Ap(0) = VCi, Ap2(0) = VCs, Bui(L) = 0, and

m=-1 T m=0

Fig. 1. Tllustration of the diffraction of a light by a grating
(a) and coupling in MFBG (b).
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Bi1(L) = 0, C; and Cs are the initial powers carried by
LPy; and LPy;. To solve these coupled first-order differ-
ential equations, the fourth-order Runge-Kutta method
is employed here. Comparing Eqs. (2)—(5), we have a
common form for these four equations

dz
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where ¢(z) stands for the amplitudes for the transverse
mode fields in Eqgs. (2)-(5), ¢;(z) stands for all the
other ¢(z) except for ¢;(z). We divide the grating into
a number of uniform pieces with length of Az. Then
we can use the fourth-order Runge-Kutta formula based
upon Eq. (8). Using the initial set of Ag1, A11, Bo1 and
Bi1, we can obtain a new set of them. Take the new
set as the initial one, repeat the process, and we will
get accurate solution to Eqs. (2)—(5). In order that the
iterative algorithm converges upon the analytic solution,
the set of newly calculated results need to be averaged
with the previous one by a weighting factor 0 < f < 1.
If the weighting factor is too small, the number of the
iterative loops increases. If it is too large, this algorithm
will be divergent.

The reflection spectra of the grating described by Eq.
(1) are shown in Fig. 2. The grating length is 0.8025
mm. Here we assume that the index change and the
mode distribution of LPq; are symmetric about the x-
axis. Figure 2(a) shows the reflection spectrum of the
grating excited by both bounded modes LPy; and LPq;
with equal power. There are three reflection peaks. The
left peak and the right peak are due to the coupling be-
tween the same modes in counter-propagating direction.
The peak in the middle is resultes from the coupling
between LPg; and LP;;. Also shown in Fig. 2(b) is
the reflection spectrum of the grating excited only by its
fundamental mode LPg;. The left peak, which stands
for the coupling from LPy; to LPy;, disappears since
there is no LP;; mode for the grating to couple to it-
self. The coupling from LPy; to LPyjand the coupling
from LPg; to LPg; still take place at their own phase-
matching wavelengths. In MMF, different modes have
different propagation constants. When coupling between
two modes satisfies the phase matching condition exactly
at some wavelengths, coupling to other modes may not
do at those wavelengths. That is also the reason why
the grating excited by the fundamental mode has a peak
reflection of around 100% while it has a peak reflection
of only around 50% is excited by both modes as shown
in Fig. 2. When the grating is excited by all the modes,
some modes are reflected completely and some modes
are reflected partially. Thus a MMFBG excited by fewer
modes usually has higher reflectivity than that excited
by more modes. If the LP;; has the symmetry about
y-axis, according to Eq. (6), coupling between LPg; and
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Fig. 2. Reflection spectrum of the grating excited by (a)
LPy,and LPy; with equal power, and (b) excited by LPo:.

this type of LP1; can not occur. However coupling from
LPy; to LP;; with the symmetry to z-axis still happens.
A versatile numerical method has been presented to
solve the coupled-mode equations. We simulated two
modes coupling by MMFBG and discussed its spectral
characteristics. MMFBG shows multiple reflection peaks
due to the coupling between the same modes in counter-
propagating direction and the coupling between the ad-
jacent modes in counter-propagating direction, and the
spectra depend on excitation conditions of the bounded
modes, such as mode power and mode number. When a
stress exists on MMFBG, the power and the pattern of
each mode redistribute. Therefore MMFBG can be used
as different types of sensors by detecting the changes of
the reflection spectrum. These characteristics are consis-
tent with the experimental results reported in Ref. [4].
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