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‘We show self-coupled and cross-coupled vector beam evolution equations in the low-amplitude regime for
screening solitons, which can exhibit the analytical solutions of bright-bright and dark-dark vector solitons.
Our analysis indicates that these self-coupled vector solitons are obtained irrespective of the intensities of
the two optical beams, whereas these cross-coupled vector solitons can be established when the intensities
of the two optical beams are equal. Relevant examples are provided where the photorefractive crystal
is lithium niobate (LiNbOgs). The stability properties of these vector solitons have been investigated
numerically and it has been found that they are stable.

OCIS codes: 190.0190, 190.4420, 190.5530, 230.7370.

Spatial solitons in photorefractive (PR) materials have
attracted much interest in the past few years! =13l It
was found that self-trapping of optical beams takes place
in both transverse dimensions and that these solitons
can be observed at microwatt and lower power levelsl®].
Thus, such PR solitons are the building blocks of all-
optical switching devices where light itself guides and
steers light without fabricated waveguides. Thus far,
steady-state spatial solitons have been predicted and
observed in photovoltaic (PV) materials(®!, and in the
screening configuration!”. Very recently, vector solitons
involving the two polarization components of an opti-
cal beam(®?! were proposed for screening solitons, which
obey a self-coupled or a cross-coupled system of nonlin-
ear evolution equations. At present, bright-bright and
dark-dark, self- or cross-coupled vector solitons, as well
as bright-dark self-coupled vector solitons have been pre-
dicted for screening solitons. More recently, we have
shown theoretically that the application of an external
field enables steady-state solitons!'%, soliton pairs!!:12,
and vector solitons!'3 in photorefractive-photovoltaic
crystals. However, vector screening solitons have been
obtained by numerical integration!®. The analytical so-
lutions of vector screening solitons also deserve special
consideration in the low-amplitude regime.

In this paper, we show self-coupled and cross-coupled
vector beam evolution equations in the low-amplitude
regime for screening solitons, which can exhibit the an-
alytical solutions of bright-bright and dark-dark vector
solitons. Moreover, our analysis indicates that these
self-coupled vector solitons are obtained irrespective of
the intensities of the two optical beams, whereas these
cross-coupled vector solitons can be established when
the intensities of the two optical beams are equal. The
stability properties of these vector solitons have been
investigated numerically and we have found that they
are stable. Relevant examples are provided where the
PR crystal is assumed to be LiNbOs3.

In general, the nonlinear changes in the permeability
are given by Ref. [§],
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Aé = —{&-[(7- Ex) - €]}/eo, 1

where g is the permittivity of the vacuum, £ is the
permeability tensor, 7 is the Pockels tensor, and E
is the PR space-charge field. Let us consider an op-
tical beam that propagates in a PR crystal along the
z axis and is allowed to diffract only along the z di-
rection. The slowly varying amplitudes A; (z,2) and
Ay (x,z) of the optical field E on the optical beam
are defined as E (z, 2,t) = A, (z,2) exp [ (kzz — wt)]| £ +
Ay (z,z) exp [i (kyz — wt)] § + c.c., where ky = kng, ky =
kny, k = 2w/A, n, and n, are the refractive indices for
light polarized along x and y directions, respectively,
and X is the vacuum wavelength. Moreover, the ex-
ternal bias electric field is also applied in the z direc-

tion. Under these conditions, the components of A&
are Aggy = —60”§Txmesc, Asyy = _EongryyxEsm and
Aggy = Agyy = —€0n3n;Toye Fse, and the space-charge
field, Es. = Eyc#, is given by Ref. [7,8],
. )
Eye=—7"—77"7"7 2
e = T T T (2)
where B, = Eg(¢Lp/ksT), 6 = Cnp, C =
1/2L,
Vglp/(ksTLs), n = 1/ S d§/(1+1/Tgane) , T
—1/2L,

is the power density profile of the optical beam,
Lp=[kpTes/(q?Na)]*/? is the Debye length, Ls is the
soliton length scale, Na is the number density of
negatively charged acceptors, Iga.x is the so-called
dark irradiance, kg is Boltzmann’s constant, g is the
charge on the electron, 7 is the absolute tempera-
ture, & is the low-frequency dielectric constant, [ is
the width of the crystal between the electrodes, and
V is the external voltage applied to the PR crystal.
By expressing A, (z,z) and Ay (z,z) in the following
way, Ag(z,2) = u(z)exp(ilz2)vIqark and Ay(z,2) =
v(x) exp(ily2)vIqark, where v (z) = ou(z), and o is a
constant, then one can quickly find the set of coupled
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equations,®

d?u
-2k, T’ —
2l zU + de2

= —k*[Aeypu + Acyyouexp(iTz)]/eo, (3a)

d%u
9 T -
ky yu+dw2

= —k*[(Aegy/o)uexp(—itz) + Aeyyu]/eo,  (3b)

where 7 =I';, — I'y + ky — k; is the phase mismatch that
combines the material birefringence and the difference
between the propagation constants.

Let the PR crystal be LiNbOj3 crystal, which is a good
candidate for the observation of the self-coupled or cross-
coupled vector solitons!®. Moreover, let us assume that
the (z, y) axes coincide with the extraordinary and ordi-
nary components of the optical beam, and that the opti-
cal ¢ axis of this crystal is oriented at an angle § ~ 11.9°
with respect to the z axis. In this case, Aezr = Ay,
and Agyy = Agy, = 0. Substituting Aez, = Agy, and
Agzy = Agy, = 0 into Eq. (3) leads to k.I'; = k,Ty.
Thus Eq. (3) yields

kyLyu — (dzu/dwz)/Q = —(kznirmesc/Q)u. (4)

For the two orthogonal polarization beams, the total
optical power density I can be obtained by summing the
two Poynting fluxes, i.e. I = Igau (|a|2 + 1) u2. For the
convenience of the analysis, we transform Eq. (4) to di-
mensionless form by ¢ = /L, where Ls = 1/(£2k,b)'/?,
and b = (k/2)n3ryz.ksT/(gLp) is the parameter that
characterizes the strength and the sign of the optical

nonlinearity. In the low-amplitude regime ( u? < 1 and
v? <« 1), Egs. (2) and (4) yield

"o_ &_ 2 2
u —:I:{ ) 6+6(|a| +1)u u, (5)

where v = d?u/d¢2. Using quadrature, we obtain the
first integral of Eq. (5)

1
v -rh==|(F-0) 0 -ud)

+ %6 (|<7|2 + 1) (u4 - ug)] , (6)

where p = v/, pp = p(z =0), and ug = u (0).

The boundary conditions for fundamental dark solitons
are % (0) =0, u (+00) = U # 0, and v’ (00) = u' (00) =
0. Substituting ue # 0, u' (00) = 0, and z — oo into
Eq. (5) leads to [y /b = — 6 (|a|2 + 1) u?,. By using
boundary conditions % (0) = 0, ue # 0, u' (c0) = 0, and
this latter form of 'y, /b, and by integrating Eq. (6), one
can get

U = Ugo tanh (\/:I:(S(|a|2 +1) /2um§) , (7)

o
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Fig. 1. Stable propagation of a dark-dark self-coupled vector
screening soliton (o = 0.4) when its z-polarized component
(solid curve) is perturbed by 10% at the input.

from which this vector soliton component v (§) is deter-
mined through v (§) = ou(€). As an example, let us
assume that the LiNbOg crystal, which is oriented at
# = 11.9° with respect to the z axis, is biased by V/I =
10 kV/cm. In this case, n, = 2.200, n, = 2.286, and
Ae = 235.85 x 10712E,./ep at A = 0.633 pm. Figure 1
depicts the evolution of the dark-dark self-coupled vec-
tor soliton obtained at I (x — 00) = 63,k and 0 = 0.4
under these conditions when its z-polarized input compo-
nent (solid curve) is perturbed by 10% in its amplitude.
The solitary behavior of this dark-dark self-coupled vec-
tor structure is of course evident in this figure since the
pair does not break up.

The boundary conditions for fundamental bright soli-
tons are u(4+o00) = 0, p(o0) = u'(00) = 0, and
p(0) = 0. Using conditions u (00) = p(o0) = 0 and
p(0) = 0, and substituting £ — oo into Eq. (6) yield
r,/b=46-6 (|a|2 + 1) uZ/2. Further integration of Eq.

(6) leads to

u = upsech (\/:I:(—(S)(|a|2 + 1)/2u0§> , (8)

from which this vector soliton component v (&) is simply
obtained through a o. Figure 2 shows the evolution of
the bright-bright self-coupled vector screening soliton in
LiNbO3 at I (z =0) = 514ark, 0 = 0.5, A = 0.633 pm,
and V/l = 15 kV/cm when its z-polarized input compo-
nent (solid curve) is perturbed by 10% in its amplitude.

Let us consider a biased LiNbOj crystal with its optical
¢ axis oriented in the z direction. An optical beam prop-
agates in the crystal along the 2z axis, and is polarized at
45° between z and y directions. Thus Agge = Agy, =0,
Aceo = Agge, |<7|2 =1, and n, = ny, which implies that
I', =T'y. Under these conditions, Eq. (3) can be simpli-
fied to

Tpu—u'"/2k, = —(:tk/?)nanrmymEscu. (9)

We now transform the gquation to dimensionless
variables by substitutions Ey. = FEg (¢Lp/ksT) and
¢{ = z/d, where d = 1/(:|:2k:gvg)1/2 and g =
(k/2)ngznsreys kT /(¢Lp). In the low-amplitude regime,
the dimensionless equation is

== (% -0+ 2(5u2) u, (10)
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Fig. 2. Stable propagation of a bright-bright self-coupled vec-
tor screening soliton (¢ = 0.5) when its z-polarized compo-
nent (solid curve) is perturbed by 10% at the input.

where ii = d?u/d(%. We integrate Eq. (10), using quadra-
ture, and obtain

(2)? — (i20)? =:|:{(%—6) (u? - u2) +5(u4—u3)},

(11)

where 4 = du/d¢ and 4o = @ (¢ = 0).

For fundamental dark solitons boundary conditions
oo # 0 and i (00) = 0, Eq. (10) gives ['x/g = & — 26u’,.
By using boundary conditions u (0) = 0, us # 0, and
2 (00) = 0, and this latter form of 'y, /g, and by integrat-
ing Eq. (11), we find

U = Ugo tanh (\/:E_6uooC) . (12)

For fundamental bright solitons, substituting boundary
conditions u (00) = tiee = 0 and 4y = 0, and ¢ — oo into
Eq. (11) leads to I';/g = § — du3. The integral in Eq.
(11) yields

u = ugsech [,/i (—5)u0¢} . (13)

Similarly, a stability study of bright-bright and dark-
dark cross-coupled vector screening solitons reveals that
they are stable.

We have shown that self-coupled and cross-coupled vec-
tor beam evolution equations can exhibit the analytical

solutions of bright-bright and dark-dark vector solitons
in the low-amplitude regime for screening solitons. Our
analysis indicates that these self-coupled vector solitons
are obtained irrespective of the intensities of the two op-
tical beams and that these cross-coupled vector solitons
can be established when the intensities of the two optical
beams are equal. The stability properties of these vector
solitons have been investigated numerically and we have
found that they are stable.
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