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Elevation data compression using IFS-based
three-dimensional fractal interpolation
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This letter presents a novel application of iterated function system (IFS) based three-dimensional (3D)
fractal interpolation to compression elevation data. The parameters of contractive transformations are sim-
plified by a concise fractal iteration form with geometric meaning. A local iteration algorithm is proposed,
which can solve the non-separation problem when Collage Theorem is applied to find the appropriate frac-
tal parameters. The elevation data compression is proved experimentally to be effective in reconstruction

quality and time-saving.
OCIS codes: 100.3020, 100.6890, 280.0280.

Digital elevation model (DEM) file is a regularly spaced
grid of remote sensing elevation points, the most com-
mon kind of which comes from United State Geologi-
cal Survey (USGS). Since the DEM files are very large
with high spatial resolution, it is of great significance
to minimize their storage space. Conventional compres-
sion techniques, such as lossy formats (JPEG, Wavelet)
and lossless formats (Huffman, Arithmetic Coding, and
LZW), have been applied to elevation grids. However,
the results turn out unsatisfactory.

Interpolation has been an important tool for terrain
visualization and is actually a simple method for com-
pression if the original terrain can be reconstructed from
sampled one. However, the common linear or spline in-
terpolation is unsuitable for DEM compression owing to
their smoothness for high-frequency components. Frac-
tal geometry[!] founded by Mandelbrot characterizes the
self-similarity of nature, such as coastline and fractured
surface of magnetic dielectric film?!. Hondal® proposed
an algorithm of fractal interpolation for natural image,
in which fractal dimension of an image is estimated and
fractional brown motion (FBM) is generated. Although
the method enjoys higher fidelity than the conventional
interpolation, its limitations lie in the multifractal be-
havior of terrain and randomness of FBM.

This letter investigates three-dimensional (3D) deter-
ministic fractal interpolation based on iterated function
system (IFS) and the inverse problems of elevation data
compression. IFS-based fractal interpolation was first
described by Barnsley and has been used for various two-
dimensional (2D) applications such as data visualization
and signal processing!¥. However, the successful applica-
tions of 3D fractal interpolation are quite limited because
it is hard to deal with the complicated form and bound-
ary continuity®=7.

A concise fractal iteration form introduced in Ref. [§]
can generate continuous 3D fractal interpolation sur-
face. Suppose rectangular domain D = I x J = {(z,y),
dp; < 2 < po, 1 < y < g2} and given original in-
terpolation data set {(Zn,Ym,Znm); D1 = To < T1 <
<IN =p, =Y <1 < < ym = g for
n=0,1,---,N,m=0,1,--- ,M}. Let I, = [Tn_1,Tn],
JIm = [Ym—1,Ym], subdomain Dy, = I, X Jp,, where
n=1,---,N,m=1,---,M. The contractive transfor-
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mations of IFS {Wyp,,n=1,--- ,N,m=1,--- ,M} are
defined as

X
an[ylz
z

where L, : I — I, and L,, : J — J,, are contractive
homeomorphisms given by

L (y)
Fom(z,y,2)

Ln(z)
] ; 1)

Tn-1+ xZ;f’;gl (x —zo) nP2=1
Ln(2) = I P %2 — 0
Tn TN —Zo T Zo n/iZ = 2)
L) =4 m' T tmtmei(y —yo) m%2=1
"’ Ym + L= (y — o) m%2=0 '

and F,,,, : R® - R is a constant function defined on
D=1IxJas

an(-’”, Y, Z) = gnm[Ln(m), Lm(y)]

+d[Ln(x)a LTn(y)] X [Z - h(w,y)], (3)

where 2z = gpm(z,y) is the bilinear interpola-
tion function determined by the four points, (z,-1,
Ym—-1, Zn—1,m—1)(Tn; Ym—1, Zn,m—1)(Tn—1, Yms Zn—1,m)
(®n,Yms Zn,m); 2 = h(z,y) is the bilinear inter-
polation function determined by the four points,
(20, Y0, 20,0) (o, Y, 20,1 ) (TN, Yo, 2N,0) (TN, Yr, 2N, M );

z = d(z,y) is an arbitrary continuous function defined
on D =1 xJ as |[d(z,y)| < 1, which is called as the
contraction function of fractal interpolation.

Fractal interpolation surface is the attractor of the
above IFS. Since the parameters of contractive transfor-
mations are simplified by this concise fractal iteration
form with explicit geometric meaning, the applications
of 3D fractal interpolation become practical and conve-
nient,.

Elevation data compression is the inverse problem of
IFS-based 3D fractal interpolation, which can find ap-
propriate contraction function in Eq. (3) so that their at-
tractors are approximate to the original data {P(z,y)}.
The inverse problem of IFS-based fractal interpolation
can be solved by using collage theorem!?].

An operator T : C[I x J] = C[I x J] can be deduced

http://www.col.org.cn
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from Egs. (1)—(3)
Ty(x,y) = gnm(z,y) + d(z,y)
LM (x), L, () —

Vg € C[I x J]

h(Ly' (@), Ly ()]

(z,y) € In X Jm. (4)

x[g(

When Collage theorem is applied to p(z,y) € C[I x J],
the above mentioned inverse problem can be rewritten as

. . 2
min £ = min [|p(z,y) — Tp(=,y)l;

= min z,
min [lp(,)

k]

= gnm(z,y) — d(z,y)

x (L (2), Lt (9)) — (L7 (@), Lt @)][|5 - (3)

In this letter, the piecewise bilinear interpolation func-
tion is chosen as the contraction function z = d(x,y),
where the parameters {dpm,n = 0,1,---,N, m =
0,1,---, M} are associated with each interpolate points.
The base function of bilinear interpolation function is
given by

( Zni1—T  Ym41—Y
Tnt1—Tn Ym+1—Ym
T € [:L‘n,:L‘n+1],y € [ymaym+1]
T—Tp—1 | Ym+41—Y
Tpn—Fn—1  Ymt+1—Ym
¢ = RS [xn— 7‘7:"] /NS [ym7ym+1]
nm — T—%n_1 | Y—Yn—1
Tn—%n—-1_  Yn—Yn-1
RS [:L'n_l,:rn],y € [Ym—1,Ym]
Tnt1 =2  Y—Yn_—1
Tntl—Fn  Yn—Yn—1
\ T € [xn7xn+1]:y € [ym—lyym]

By replacing d(z,y) in Eq.(5) with d(z,y) =
N M
> > dmn * dmn, the inverse problem in Eq. (5) can be

n=0m=0
written as the nonlinear optimization for several variables

{dnm}

min E = min ||p(z,y) — Tp(z,y)|l5

Zduv Puv)

x[p(Ly " (z), Ly () Lo o)l (6)

Genetic algorithm is effective to solve the nonlinear
optimization problem of several variables, however it is
unrealistic for time-consuming computation when there
are thousands of variables. When we attempt to gain
the derivative equation set from the partial derivative for
each variable, it is quite difficult to list the explicit form
of equation set. Especially, the scale of equation set be-
come huge for a large number of variables. Furthermore,
the Collage distance depends on many variables {dnm}
in each subdomain, which is different from the common
block-based fractal codingl®!. Consequently, the equation
set can not be simplified as separated and independent
equation as that of block-based fractal codingl®!, which
leads to the hard-solving non-separation problem.

= min z, nm (
{dm}%’gll[p( y)—g

- h(Lgl (x)7

As far as the localization of bilinear interpolation func-
tion is concerned, a local iteration algorithm (LIA) is pro-
posed to solve this non-separation problem, in which only
the related four subdomains {Dym, Dpti.ms Dpmt1s
Dyt1,m+1} are taken into auount the optimal value of

n+1 m+1

mlnEm—manZH[p:vy

u=nv=m

— Guv (2, Y)]

_(du—l,v—l(,bu—l,v—l + du—l,u¢u—1,v

+du,v—1 (bu,v—l + du,v¢u,v)

x[p(Ly" (@), L7 (v)) = MLy (), L7 ()] 3 - (7)

Figure 1 serves to demonstrate the algorithm. For
DEM surface {(1'7117,9(1'7!/))’ z = 0,---,K, y =
0,---,K} and given original interpolation data set with
the regular sample rate of 1: S as {(<n, Ym, Pn,m), where

=01, Lim=01. L L=K/S) let A0B =
(aij) © (big) = zz% i), A®B =

i=0j=

(aij - bij) = (ciz) = 8

as

(ai;) ® (bij) =
» Enm in Bq. (7) can be rewritten
B = | &1 = (n-smos Ty + dni s
+dn,m_173) + dn,mz) ® 51)”2
I JTAY SR
b T, + dosT) 0 B
+[25 - (o1 Tt + s
+dn_1,m+1f3> + dn’m"'lﬁ) @ E;Hz

-— =g -
+ ||A4 - (dn,mIl + dn+1,mI2

- = =2
+dpmt1l3 + dpt1,my11s) ® By Hz ) (8)

B

c D

Fig. 1. Tllustration of estimating fractal parameters.
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where A, = {A1(i,§)} = {P(i+(n=1)x$, j+(m—1)xS)
— gam(E+(n—1)%S,j+(m—1)%S5)}, As = {As(3,5)

{_1)’(1'+n*5,j+(m—1)*5)—gnm(i+n*S,j+(m—1)*S) ,
As = {As(i, )} = {Pli+(n—1)*S,j +m=*5) -
gm(E + (n — 1) * 5,5 + m *x S)}, Ay= {A4(6,5)} =
{_Z)J(i—l-n*s,j—l-m*S)—gnm(i—f—n*S,j—i—m*S)},
B} = {Biif)) = {Pli*S,j % S) = hii» S,5 % ),
B} = {Bu(i,)), = (Bi(S — i.), By = {Bs(iog) =
{B1(S—i,j)}, B, = {B4£7;a.7)} = {Bl(S_i)S_j)}v L =
{Il(i7j)} = {(I)OO(ivj)}v I, = {12(i7j)}_)= {(I)OO(S_iuj)}y

B = {I(i,5)} = {%0(i,S — )}, I = {L(i,j)} =
{¢OO(S_i7AS:j)}‘

- - -
_)Let a_ =_>A1 - (dn—1i>n—1 Il +dn—1j)n12 +dn,m_—>1 IBL?
By, aj =As—(dnm—-151 +dny1,m—1lo+dni1,m11)RBs,

— - —
(ﬁ = éi} - (dn—l,mg + Cln—l,m+1 I3 + dn,m+1£1)) by %)7
a__;l = A_4> - (ﬂ1+1,m12 +in,m+i>13 + dn+1£1)+1 LQ)@ By,
b;>1 =_-)[4®Bl, b2 = I3 ®Bg, b3 = 12 ®B3, and

b4 =1, ® By, the value of d,,;, to minimize E,,,, is

_adobl+adobl+adobd+alobl
M bl + b2+ b3mbi+bADbA

Now LIA can solve the non-separation problem when
Collage Theorem is applied to find the appropriate frac-
tal parameters, IFS-based 3D fractal interpolation can
solve the inverse problem of elevation data compres-
sion. The experiments of DEM file from USGS are
shown in Figs. 2 and 3. Figure 2(a) is 1:250,000-scale
DEM for Idaho(named kalispell-e) and Fig. 3(b) is an-
other 1:250,000-scale DEM for Idaho (named hailey-e).
Efficiency of such algorithm can be measured with the

Fig. 2. (a) Original DEM and (b) reconstructed DEM with
sample rate 1:8.

R
Fig. 3. (a) Original DEM and (b) reconstructed DEM with
sample rate 1:16.

common compression ratio and peak signal-to-noise ratio
(PSNR) for the reconstructed DEM.

The full process of the algorithm is as follows.

1) The DEM file is regularly sampled to gain the
pairs of interpolation points set {(n, Ym, Pn,m), for
n=0,1,---,L,m=0,1,---, L}

2) LIA is used to find the right fractal parameters {d},,,
forn=0,1,---,L,m=0,1,--- ,L}.

a) The iteration starts from any initial values {dpm }
and only changes a single parameter d,,, at a time.

b) dZ,, can be obtained from Eqgs. (8) and (9) to reach
the minimum E,, (the superscript denotes the new value
after calculation).

c) Accordingly, the next value of {dnn} such as d;, .,
can be achieved by replacing dp,, with d;,,,. In turn, the
other values can be obtained in similar process to reach
new fractal values {d},,, }, which is gradually converge on
final optimization.

3) The pairs of interpolation points set {(zn, Ym, Pn,m),
where n = 0,1,---,L, m = 0,1,--- ,L} and fractal pa-
rameters {d},,, n =0,1,---,L, m=0,1,---, L}, which
yield the minimum F for Eq. (6), are stored as the com-
pressed data. The compression rate can be achieved.

4) The reconstructed terrain is the attractor of the
above stored IFS using 3D fractal interpolation described
in Egs. (1)—(3). d(z,y) in Eq.(3) can now be ex-
pressed by fractal parameters {d},,, n = 0,1,---,L,
m=0,1,---,L}. Amulti-resolution recursion is adopted
in the process of reconstruction to replace the common
time-consuming fractal iteration®l. The PSNR is calcu-
lated for describing the difference between original DEM
and reconstructed DEM.

The repeated process of convergence in LIA en-
joys advantages over the common block-based fractal
compression!?). The DEM in Fig. 2(a) is sampled by 1:8
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and encoded by using the ILA of 3D fractal interpolation.
The compression rate is 31.75, while the PSNR is 40.05
dB for the reconstructed DEM in Fig. 2(b). The DEM
in Fig. 3(a) is sampled by 1:16 and encoded by using the
LIA of 3D fractal interpolation. The compression rate is
126.02, while the PSNR is 30.63 dB for the reconstructed
DEM in Fig. 3(b). The results show that the compres-
sion rate and PSNR are highly effected by sample rate.

Although the computation of the fractal coding based
on 3D fractal interpolation is complicated, Egs. (8) and
(9) can actually be calculated within a short time with-
out the time-consuming searching and matching process
for the block fractal codingl®). Also, LIA enhances the
coding process in which each step of iteration is com-
puted locally and quickly. When LIA is considered as a
kind of zero-search fractal coding method, it is similar to
bath fractal transformation'® but differs in that the LIA
enjoys an explicit geometric meaning described by Egs.
(1)—(3) and higher reconstruction quality. The coding of
DEM in Fig. 2(a) has been completed within 3.5 s with
the PC computer (CPU PIII550, RAM 128M).

The experimental results prove the efficiency and prac-
ticality of using IFS-based 3D fractal interpolation for
elevation data compression. Furthermore, the algorithm
can also be applied for many fields such as terrain-based
mapping and remote-sensing.

S. Wu’s e-mail address is wusy@sjtu.edu.cn.
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