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An algorithm is presented for multi-sensor image fusion using discrete wavelet frame transform (DWFT).
The source images to be fused are firstly decomposed by DWFT. The fusion process is the combining of
the source coefficients. Before the image fusion process, image segmentation is performed on each source
image in order to obtain the region representation of each source image. For each source image, the salience
of each region in its region representation is calculated. By overlapping all these region representations of
all the source images, we produce a shared region representation to label all the input images. The fusion
process is guided by these region representations. Region match measure of the source images is calculated
for each region in the shared region representation. When fusing the similar regions, weighted averaging
mode is performed; otherwise selection mode is performed. Experimental results using real data show that
the proposed algorithm outperforms the traditional pyramid transform based or discrete wavelet transform

(DWT) based algorithms in multi-sensor image fusion.

OCIS code: 100.0100.

With the rapid improvement of sensor technology, nu-
merous multi-sensor data are obtained in many fields
such as remote sensing, medical imaging, machine vi-
sion, and military application. Multi-sensor images of-
ten contain complementary and redundant information
about the region surveyed. Through combining regis-
tered images generated by different imaging systems, im-
age fusion can produce new images with more complete
information, which are more suitable for the purposes
of human vision perception, object detection, and auto-
matic target recognition. The system reliability can be
improved by using the redundant information, and also
the system capability can be improved by using the com-
plementary information.

Multi-resolution decomposition is widely used in multi-
sensor image fusion. It mainly includes pyramid trans-
form in Refs. [1-3] (such as Laplacian pyramid, gradi-
ent pyramid, and the ratio-of-low-pass pyramid) and dis-
crete wavelet transform (DWT) in Refs. [4—6]. A pyra-
mid structure is an efficient way to implement multiscale
representation. Each image in a pyramid is a filtered
and sub-sampled copy of the previous images. DWT
described in Refs. [7,8] can also decompose an image
into several components, each of which captures infor-
mation present at a given scale. In the filter theory,
DWT decomposition of an image can be regarded as two
directional filtering operations (on rows and columns)
and subsampling by one of two factors. The pyramid
transform or DWT yields a shift variant data repre-
sentation that is not appropriate for multi-sensor im-
age fusion. Compared with pyramid transform or DWT,
discrete wavelet frame transform (DWFT) described in
Refs. [9,10] avoids subsampling by using an overcomplete
wavelet decomposition. This results in both aliasing
free and translation invariant. Consequently, DWFT is
more suitable for image fusion than pyramid transform
or DWT. A generic framework of image fusion schemes
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was proposed['!], in which DWFT was considered to be
one method of multi-resolution decomposition, and a re-
gion based fusion rule was proposed. In this paper, we
propose a new multi-sensor image fusion scheme based
on DWFT. The source images are firstly decomposed
by DWFT. Corresponding coefficients are combined ac-
cording to the region representations. Fused image is
obtained by performing inverse DWFT. In our fusion
scheme, a new region salience measure and a new re-
gion representation method are used to guide the fusion
of multi-sensor images.

The block diagram of two-dimensional (2D) DWFT
and inverse DWFT transform is shown in Fig. 1. For
image I to be decomposed, we use f(x,y) to denote the
intensity of pixel (z,y). The DWFT coefficients of pixel
(z,y) at level £ 4+ 1 can be defined as
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where fo(z,y) = f(z,y), h and g are 1D prototype filters,

hyoi and gyq:i are dilated versions of low-pass filter A and
high-pass filter g, respectively. The reconstruction pro-
cess at level 7 is defined as
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Fig. 1. The block diagram of DWFT and inverse DWFT.
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where i and g are 1D synthesis filters, ﬁTgi and gyoi are

dilated versions of h and §, respectively.

A DWFT with N decomposition levels will have a to-
tal of 3- N 4+ 1 subbands. All of them are of the same
size as the source image. The nth subband coefficient
of pixel (z,y) is denoted by DWF(z,y,n), where n =
1,2,---,3-N+1.

Before the fusion process by combining the source
DWEFT coefficients, image segmentation in Ref. [12] is
performed on source images A and B. We denote Ra
(or Rp) as the region representation (different label val-
ues representing different regions) used to label the seg-
mented image of A (or B). A shared region representation
R used to label both A and B is obtained by overlapping
two segmented images: each intersection area belongs to
a different region. The salience of a region is measured
by the region’s mean square deviation (o) and abrupt
change magnitude (7). For region ro € R, the region
mean square deviation of r is defined as

1
Num(ra)
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where fa(z,y) is the intensity of pixel (x,y) of image
A in ra, Num(ra) is the total number of pixels in ra,
E(ra) is the mean intensity of all pixels in region ra,
Ex(ra) = sampy . > fa(z,y). Regions having large
(z,y)Era
region mean square deviations often contain much infor-
mation in the sense of image detail. For region ra € Ra,
the region abrupt change magnitude of ra is defined as

P(ra)

Ta(ra) = Num(ra)

X% Y (Ea(ra) = Ea(nr)| + |oa(ra) — oa(nr))), (7)

where ‘nr’ is a neighborhood region of region ra in Ra, T
is the total number of the neighborhood regions around
ra, P(ra) is the perimeter of region ra and is calculated
as the total number of pixels in the boundary of region
ra. Regions having large abrupt change magnitude val-
ues often contain much important information such as
targets being detected.

For region rao € Ra, the region salience of rp is defined
as

Sa(ra) =@ -Ta(ra) + @2 - oa(ra), (8)

where wy and ws are weights, w; + ws = 1. For region
rg € Rp, the region salience Sg(rg) is calculated in the
same way as the computation of Sa(ra).

The fusion process is guided by the shared region repre-
sentation R. For region r € R, the region match measure
between images A and B is defined as
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To determine whether selection or averaging will be
used in the fusion process, Map(r) is compared to a
threshold a. For region r € R, if Mag(r) is less than
or equal to «, then selection mode is implemented as

DWFA (1:7 y7 n)’

if S > 5
DWFr(z,y,n) :{ DWFg(z,y,n), A

if Sa(r) < Sp(r) °*
for (z,y)er,n=12,---,3-N+1, (10)

where DWFg(z,y,n) is the composite coefficient,
‘F’ indicates the fused image, DWFa(z,y,n) and
DWFg(z,y,n) are the source coefficients of images A
and B, respectively, Sa(r) = Sa(ra) subjected to r C ra
and rao € Ra, and Sg(r) = Sp(rg) subjected to r C rp
and rg € Rp. For region r € R, if Mag(r) is greater
than «, then the source images are similar in region r
and the weighted averaging mode is performed on fusing
the source coefficients in region r. The weights used for
averaging are defined as

{ wmin=l(1—%ﬂ)
2 l1—a (11)
Wmax = 1 — @Wmin
In the weighted averaging mode, the composite
coefficient is the weighted average of the source
coefficients and is calculated as

DWFr(z,y,n) =
@max - DWFA (2, y,n) + @min - DWF5(z,y,n),
if Sa(r) > Sg(r)
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for (z,y)€r,n=12---,3-N+1. (12)
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After the composite coefficients are obtained, inverse
DWEFT transform is performed to get the fused image F.

Two experiments were conducted to compare our
DWEFT-based algorithm with pyramid transform based
algorithm in Ref. [1] and discrete wavelet transform based
algorithm in Ref. [4]. The results of experiment 1 are
shown in Fig. 2. In experiment 1, the source images
to be fused as Figs. 2(a) and (b) are infrared image
and visual image (size: 460 x 346), respectively. The
results of experiment 2 are shown in Fig. 3. In exper-
iment 2, the source images to be fused as Figs. 3(a)
and (b) are computerized tomography (CT) image and
magnetic resonance (MR) image (size: 346 x 346), respec-
tively. In the region representations of Fig. 2 or Fig. 3,

Fig. 2. Fusion results of infrared and visual images. (a) In-
frared image to be fused; (b) visible image to be fused; (c)
the region representation of (a); (d) the region representation
of (b); (e) the shared region representation by overlapping
(c¢) and (d); (f) fused image using our algorithm; (g) fused
image using pyramid transform based algorithm in Ref. [1];
(h) fused image using DWT based algorithm in Ref. [4].

Fig. 3. Fusion results of CT and MR images. (a) CT image
to be fused; (b) MR image to be fused; (c) the region repre-
sentation of (a); (d) the region representation of (b); (e) the
shared region representation by overlapping (c) and (d); (f)
fused image using our algorithm; (g) fused image using pyra-
mid transform based algorithm in Ref. [1]; (h) fused image
using DWT based algorithm in Ref. [4].

different colors represent different regions. The “9-7”
biorthogonal filters are used for DWT and DWFT. When
performing the algorithms in Refs. [1,4], 3 X 3 window is
used to calculate the salience of each coefficient after de-
composition. The total decomposition level is 3 in all
these experiments.

Two objective evaluation methods are employed to
evaluate the performance of each image fusion algorithm:

1) Entropy (H)

L
H ==Y p(f)log, p(f), (13)
f=0

where p(f) is the normalized histogram of the fused im-
age F, L is the maximum intensity, in our experiments
L is equal to 255. The entropy is used to measure the
overall information in the fused image. The larger the
value is, the better the fusion result we get.

2) Mutual Information (MI)

Mutual information measure proposed in Ref. [13] can
estimate how much information is obtained from the
source images. The larger the value is, the better the fu-
sion result we get. Let pa (a) and pg(b) be the normalized
histograms of images to be fused A and B, respectively,
pr(f) is the normalized histograms of fused image F, and
pra(f,a)(or pra(f, b)) is the joint histogram of images F
and A (or B). The joint histogram, for example pra (f,a),
is defined as

N M
1
pra(f,a) = N-M Z Z hea(Ir (m, n), Ia(m,n)),
n=1m=1
a=0,1,---,L,b=0,1,---,L, (14)

where hpa (Ir(m,n), In(m,n)) equalsto 1 if In(m,n) = f
and Ia(m,n) = a, otherwise it equals to 0, Ir(m,n) (or
Ia(m,n)) is the intensity of pixel (m,n) in image F (or
A), L has the same meaning as which in Eq. (13), M
is the height of the source images, and N is the width
of the source images. The mutual information between
the fused image (F) and the source images (A and B) is
defined as

MIAB = Ipa + Irp, (15)

pr(f)-pala)

L L
where IFA = Z EpFA(f,a) log2 (ML) and
f:Oa:O

L L
rn = 52 52 pen (1. 8) e, (285t

Performance evaluation is shown in Table 1. From this
table, we can conclude that the performance of our al-
gorithm is better than that of these traditional pyramid
based or DWT based multi-sensor image fusion algo-
rithms.

Table 1. Performance Evaluation

Algorithm DWFT DWT Pyramid
H 70668 6.3431 6.2512
Exp. 1
MI 43732 1.3637 1.4797
H 67018 6.2034 6.1025
Exp. 2
MI  4.6293 2.6157 3.2427
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