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‘We construct orthogonal Bell states with entangled squeezed vacuum states and show that these states can
be discriminated with arbitrary precision when the amplitude of the squeezed states becomes sufficiently
large. A scheme of teleporting a superposition state of the squeezed vacuum states based on the Bell state

measurement is presented.
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Quantum entanglement is one of the most striking fea-
tures of quantum mechanics. In the process of pro-
cessing and transmitting quantum information, such
as teleportation'=7), cryptography®!, and quantum
computation®=1% entanglement lies in extremely impor-
tant position.

There are different types of entanglement for light
fields. For instance, in the teleportation experiments
from the Innsbruck groupl?, it is the polarization direc-
tions of single photons that are entangled. In the Caltech
teleportation experiments!3, two em field modes are en-
tangled with respect to photon numbers and the state
used for teleportation is a two-mode squeezed state. Re-
cently, van Enk et al. have used nonorthogonal entan-
gled coherent states called quasi-Bell states as quantum
channel to teleport one qubit encoded in Schrédinger cat
states and have proved that the successful probability
is 1/2"]. The method has been generalized to teleport
entangled coherent states'? and superposition states of
squeezed vacuum states('3], but for the latter, the suc-
cessful probability is only 1/4.

In the standard process of teleportation, the sender
Alice and the receiver Bob share the two members of
an entangled pair. Alice is given an unknown quantum
state |¢) which she wants to teleport. She makes a Bell
state measurement, a projection to an orthonormal base,
on her Einstein-Podolsky-Rosen (EPR) member and the
state, and sends the result through a classical information
channel to Bob. After receiving the classical information,
Bob carries out the appropriate unitary transformation,
and obtains the state |¢).

In above process of teleportation, an important prob-
lem is discrimination of the Bell states. It has been shown
that Bell state measurement on a product Hilbert space
of two two-level systems is not possibly completed by us-
ing linear elements('4.

Recently, Jeong et al.['%] have constructed an orthog-
onal Bell basis set from nonorthogonal coherent states.
They have suggested an experimental setup (a beam
splitter and two photodetectors) to discriminate these
Bell states constructed from entangled coherent states
and have shown that arbitrary precision can be achieved
when the amplitude of the coherent states becomes
sufficiently large. The results can be used to teleport
a superposition state of coherent states.

The squeezed vacuum state is another important state.
It is possible to construct an orthonormal basis by su-
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perposing both nonorthogonal and linearly independent
squeezed vacuum states |{) and |[—¢). In this letter, we
generalize Jeong’s method"® to entangled squeezed vac-
uum states. We show how to discriminate the Bell states
constructed from entangled squeezed vacuum states and
how to realize teleportation of a superposition state of
squeezed vacuum states.

The squeezed vacuum state can be obtained by acting
squeezing operator on a vacuum state. In its number-
state representation, it takes the form
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here & is annihilation operator, ¢ = re® is complex
squeezed parameter.

Following Jeong!'5], we construct an orthonormal basis
by superposing both nonorthogonal and linearly indepen-

dent squeezed vacuum states |¢) and |—(),
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where N, = cos®2¢p is a normalization factor and the
parameter ¢ is defined as

sin2¢p = (¢| — ¢) = cosh™ /2 2r. (5)

For simplicity, we suppose that  is real. From Egs. (3)
and (4), four Bell states can be defined as

|Bra) = % (T T £ [T) [T, (6)
B3 ) = % (T [T_) £]T_)|T4)).  (7)
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which may be represented by |¢) and |—() as
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If the four different Bell states that can be discrim-
inated, we can teleport a superposition state of two
squeezed vacuum states by the normal method.
It is well known that a lossless 50/50 beam split-
ter can transform the coherent state |a), |3), as

|(a+zﬂ /\/_) | (B +ia) /\/_) Let 4; and @ denote
the anmhﬂatlon operators for the two light beams enter-
ing the two input ports of the beam splitter. Let A; and

As denote the annihilation operators for the light beams
leaving the two output ports of the 50/50 beam-splitter.
The boundary conditions at the surface of the beam split-
ter lead to the well-known input-output relation
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We assume that the input light beams of the beam
splitter are in squeezed vacuum states

[¥)in = S1(¢1)S52(¢2) [0,0), (13)

the operators S;((;) are defined by Eq. (2). Cai et al.['3
proved that if the two input light beams have the same
squeezing amplitudes and phases, i.e., ro =r; =r and 8,
= 61 = 0, the output light field is in a two-mode squeezed
vacuum statel”

|¥) i = €XP [—re"(a"'”/z)ﬁfﬁg'

A (a2 +i81).  (12)

re= 04712 4y Ay] 0,0 (14)

If the two input light beams have the same squeezing
amplitudes but a phase difference of =, i.e., ro = r; =
r and 63 — 0y = =, the output light field is in a direct
product of two single-mode squeezed vacuum states
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Obviously, in Eq. (14), the state is an entangled state,
but in Eq. (15), the state is a non-entangled state.

Suppose each mode of the Bell state is incident on the
beam splitter. After passing the beam splitter, the Bell
states become (assume ¢ is a real number)
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Next, we detect the photon number in two output ports
using the photodetectors. According to the measurement,
results and Egs. (16)—(19), we can discriminate that the
incident light field is in which Bell state.

If two identical odd numbers of photons are detected
at two detectors, the incident state on the measurement
setup is |By). If two different numbers of photons are
detected at two detectors and n; is an odd number (this
implies that, in mode 1, the photon number is 2n4) but
o is an even number (or ny is an even number but ny is
an odd number), the incident state is |By).

When r > 1, sin2¢ — 0. If two different numbers of
photons are detected at two detectors and n; and ny are
both odd numbers (or even numbers), (—1)"* = (-1)"",
the incident state is |Bs). If two identical even numbers
of photons are detected at two detectors, the incident
state on the measurement setup is, most probably, |Bi).

We have noticed that, if two identical even numbers
of photons are detected at two detectors, the input light
field is likely to be in state |Bs) rather than |B;). But
for r > 1, the relatively wrong probability is

> |(2ml, (2ml, Bs)'|”
PVV — m=0

= : (20)
> |(2ml; 2ml, By)'|

which is negligible (see Table 1).

So, for r > 1, all the Bell states may be discriminated
with arbitrarily high precision.

Following, we describe how to teleport a superposition
of squeezed vacuum state. Suppose the state that Alice
need to teleport is

[¥)o = AlC)o + Bl—C)o s (21)
which can be written as
WJ)O =AI|\I’+)0+B'|\I’—)0- (22)

Suppose the quantum channel shared by Alice and Bob
is
1
|B2)ap = 7 ()0 [T)y — [T), [T-)y) . (23)

Table 1. Relatively Wrong Probability Pw
Versus Varions r Values

r sin 2¢ Py
2.0 0.1914 0.2112
4.0 0.0259 0.0074
6.0 0.0035 0.0002
80 47x107* 48x107°

More recently, Zhou et al. have proposed a method to
generate such states!'8]. We suppose the systems 0 and a
are located at Alice’s side and system b is at Bob’s side.
Alice let light beams 0 and a through the beam splitter.
She then measures the photon number in the two out-
put modes, respectively, and determines that the input
light is located in which Bell state. Suppose the state is
located in |B1),, . In this case, the state on Bob’s side
collapses into

0alBi W 1By = 5 100y — 210y (20

Bob then performs a unitary transformation
(1€), (€I, — [—€)p (—<l3) /Ny, and obtains the state of
Eq. (21).

In conclusion, we have constructed an orthogonal Bell
basis with entangled squeezed vacuum states and have
shown that these states can be discriminated with arbi-
trary precision when the amplitude of the squeezed states
becomes sufficiently large. A scheme of teleporting a su-
perposition state of squeezed vacuum states based on
the Bell state measurement is presented. However, this
does not imply that the scheme is near to realization
with current experimental expertise. In fact, as in Refs.
[11-13] and [15], in our scheme an ideal photon counter
is also not available at present.
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