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Expressing the perturbation optical field in terms of module and phase, using the linearized nonlinear
Schrodinger equation governing the evolution of perturbations, we have deduced the analytical expressions
of the modules, phases, and gain coefficients of the perturbations with zero or cut-off frequency, and studied
the evolutions of the two perturbations travelling along lossless optical fibers in the negative dispersion
regime. The results indicate that the phase of the perturbation with zero (or cut-off) frequency increases
(or decreases) with the propagation distance monotonously and tends to its asymptotic value nxw + /2 (or
nm) eventually. The evolution rates of the phases are closely related to the initial phase values. Although
the asymptotic values of the field gain coefficients of the above mentioned two perturbations are equal
to zero, and the increasing fashion of the modules is different from the familiar exponential type, it still
suggests that the perturbations have a divergent nature when the propagation distance goes to infinity,
indicating that the two kinds of perturbations can both lead to instability.
OCIS codes: 190.4370, 190.3100, 190.5940, 190.3270.

Modulation instability in optics has attracted continu-
ous interests!! =7 Phﬁrsically, its mechanics is identical
to those of temporall® and spatial solitons®1%. In the
temporal domain, the modulation instability can be in-
terpreted as that, when co-propagating with the back-
ground optical field in the negative group velocity disper-
sion (GVD) region of the optical fibers, the perturbation
field continuously obtains a gain from the background
field and tends to divergent eventually as a result of the
influence of the nonlinear effects. Previous investiga-
tions have made clear that the perturbation growth re-
sults from the interplay between the Kerr effects and the
negative GVD. Utilizing the small signal approximation,
the nonlinear Schrédinger equation has been linearized
and the expression for the power gain coefficient of the
perturbation with different angular frequencies has been
derived. According to Refs. [11,12], in lossless optical
fiber, only those perturbations with angular frequencies
less than a critical value (or cut-off angular frequency)
Q. can lead to modulation instability. And the value of
the cut-off angular frequency 2. depends on the GVD
coefficient 3, Kerr coefficient -y, and the input power P,
of the background optical field, which reads

Qe = VYR 1. (1)

The power gain coefficient for the perturbation with
angular frequency {2 satisfies

g =AU v -2 (2)

According to Eq. (2), one concludes that, perturbations
with angular frequencies |{2| equal to 0 and 2. have zero
power gain. In this case, one naturally concludes that
it is unlikely that the modules of the two special per-
turbations will get larger and larger. Therefore, the two
special perturbations should not be unstable.

Is it really true? Although it is difficult to verify
this experimentally because loss always exists in optical
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fibers. The above mentioned conclusion cannot be made
from the perturbation equations. In this paper, start-
ing from the linearized nonlinear Schrédinger equation,
evolutions of the two special perturbations are analyzed
in detail. The results show that, although their modules
do not grow exponentially as what we are familiar with,
and although the equivalent gain coefficients vary with
the propagation distances in the form of 1/z and tend
to zero when the distance is long enough, the modules
are divergent when the distance goes to infinity. Accord-
ingly, the two perturbations should not be regarded as
stable.

In the case of small signal approximation, the slowly
varying module of the optical field including the pertur-
bation can be assumed asl!1:12]

A= (Ao + o) exp (ivA32) , (3)

where Ay and « are the modules of the input background
optical field and the perturbation field, respectively.
Substituting Eq. (3) into the nonlinear Schrodinger equa-
tion in lossless optical fibers, and in the case of small
signal approximation, i.e., |a| < Ag, adopting the first
order approximation, one can obtain{!1:12

i90/0z = (8/2) (6%) /(9T*) = vPo(a +0™),  (4)

where a* is the complex conjugate of . For the pertur-
bation with angular frequency 2, the perturbation a has
once been written as {Up cos(kz—QT)+iV; sin(kz—QT)}
or {Up expli(kz — QT)] + iVp exp[i(kz — QT)]}, and the
power gain coefficient has been derived for perturbation
with different angular frequencies, as expressed in Eq.
(2).

Mathematically, the above mentioned forms are usable
in principle, but as the derivations are not so rigorous,
some physical phenomena have been masked. Generally,
as a complex number, the perturbation « can be ex-
pressed in the form of the real part and the imaginary
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part or two real numbers, i.e., the module and phase
difference between the perturbation and the background
optical field. Thus, the perturbation can be put down as

a=0(z)exp{i[¥(2) — QT]}. (5)

Substituting Eq. (5) into Eq. (4) and separating the
real and imaginary part, one can obtain

8p/0z = |B] {QF [1 + cos (2¢)] — Q°} /2,  (6a)

86/0z = |B| Q3dsin (2¢) /2, (6b)

where
Y= v (Z) - QTy (7&)
Q= Q. / V2. (7b)

When deriving Eqgs. (6a) and (6b), the fact of 8 < 0
has been taken into consideration. As a result, the two
equations can only be used in negative dispersion optical
fibers to describe the evolution of perturbation with an-
gular frequency €. It can be seen from Eq. (6a) that, in
the case of || < €, integration of ¢ leads to the inverse
hyperbolic tangent function and one may conclude that
the perturbation is unstable. The field gain coefficient
gr of the perturbation can be obtained directly from Eq.
(6b) according to its definition

gr = (1/0)(86/82). 8)

In the special case, i.e., |Q] equals to 0 or 2, the so-
lutions of Eq. (6a) will take different forms from those
of | < Q.. Thus, the propagating stability of the two
perturbations will take special forms. One will soon see
from the following analysis that the two perturbations
are divergent.

In case of || = €2, from Eq. (6a) one can obtain that

Op/0z = —|ﬂ|chsin2 ®. 9)
Integration of Eq. (9) leads to

ctg [ (2)] = 18]}z + ctg (o), (10)

where ¢p is the initial value of z = 0. Inserting Eq. (10)
into Eq. (6b), one can obtain

ge = {181 9% [|810}2 + ctg (v0)] }

[{1+ 18193 +ctg(e0)]’}. (1)

It is easy to see that, gr varies with the propagation
distance z in the form of 1/z, in other words, when the
distance z tends to infinity, gg of the perturbation with
angular frequency ). will tend to zero. However, this
does not mean that the ratio of the module of the per-
turbation to its initial value is convergent.

Substituting Eq. (11) into Eq. (6b) and completing the
integration, one can obtain

5(2) = 60\/ {1 + (181932 +ctg (wo)}z} [ese? (o). (12)

It can be seen from Eq. (12) that, the module of the
perturbation is divergent. In other words, the perturba-
tion with angular frequency 2. should not be stable.

Similarly, it can also be proved that the phase and
field gain coefficient of the perturbation with angular
frequency 0 satisfy

tg [0 (2)] = |8 072 + tg (o) , (13a)
g = {|8193 [181 9%z + tg (v0)] }
J{1+81952 +tg @0’} (13D)

The analytical expression of the perturbation module
can still be obtained as

5(2) = 60\/ {1 + (181932 + g (vo0)] } [sec? (go). (14)

From Eq. (14) it can be realized that the perturbation
module is also divergent.

Equations (10)—(14) tell us that, at the initial stage of
the evolution, the perturbation varies in a complicated
fashion and the variation is closely related to the initial
phase at z = 0, and the gain coefficient is not neces-
sarily equal to zero. Only after propagating through a
distance long enough, does the perturbation phase tend
to an asymptotic value ¢, and the gain coefficient tend
to zero.

Here, it is necessary to add that, the case of Q= 0 may
correspond to the synthesis of two optical waves with
different intensities, and the initial phase difference be-
tween them should be non-zero, otherwise, the pertur-
bation analysis is not applicable. Similarly, one should
not divide one optical wave into two parts with different
intensities. When we use Eq. (3) to represent the opti-
cal field, the evolution of the main wave has been ex-
pressed as Ag exp(iyAZ2z) and this expression is based on
the assumption that the evolution of the main wave is
not influenced by the perturbation. If one divides one
optical wave into two parts and calls one of them the
perturbation, the assumption that the evolution of the
main wave is not influenced by the perturbation is not
valid, because as a part of the main wave, the perturba-
tion certainly influences its own evolution.

In Fig. 1, the phase evolutions of the perturbations,
with angular frequency || equal to Q. (a) and 0 (b),
have been plotted for different initial phases. The [p -
rameters used in calculations are 8= —0.02 ps?/m[1],
Q0 =1 x 102 rad/s.

It can be seen that, the phases of the perturbations
with cut-off angular frequency decrease monotonously
with the propagation distance and tend to nw (n = 0, £1,
+2, ---) as shown in Fig. 1(a). When the initial phases
fall into the regions of —7 < ¢o < 0 and 0 < ¢ < 7, the
asymptotic values ¢, of the perturbation phases are —7
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Fig. 1. Evolutions of perturbation phases with propagation
distance for different initial phases.

and 0, respectively. Similarly, the phases of the pertur-
bations with 0 angular frequency increase monotonously
with the distance and tend to nw + 7/2 (n =0, £1, £2,

--) as shown in Fig. 1(b). When the initial phases fall
into the regions of —7/2 < ¢ < 7/2, T/2 < g < 37/2,
and —7 < ¢ < —7/2, the asymptotic values ¢ of the
perturbation phases are 7/2, 37/2, and —7/2, respec-
tively.

It is not difficult to understand the above mentioned
asymptotic behavior from the phase equations. For the
perturbation with cut-off angular frequency, Eq. (10)
indicates that, ctg[¢(z)] is an increasing function of z.
Thus, when the distance goes to infinity, the asymptotic
value ¢ tends to nw (n =0, £1, £2, ---). In fact, Eq.
(9) indicates that ¢(z) itself is a decreasing function of
z. Therefore, when the initial phases fall into the region
- < ¢g < 0 and 0 < ¢ < 7, the asymptotic values @
of the perturbation phases are —m and 0, respectively.
And the evolution tendency of the phase of the pertur-
bation with zero angular frequency can also be analyzed
in the similar way.

In Fig. 2, the evolutions of the normalized modules of
the perturbations with angular frequency || equal to
Q. (a) and 0 (b) have been plotted for different initial
phases. The parameters of 8 and Q¢ used in calculations
are the same as those in Fig. 1. It can be seen that,
depending on the initial perturbation phases, the nor-
malized modules of the two special perturbations evolve
in two possible ways, increasing monotonously, and de-
creasing before increasing. In fact, from Egs. (12) and
(14), it can be realized that, within one period of the tan-
gent and cotangent functions, if the initial phases satisfy
0 < ¢o < m/2, the tangent and cotangent functions are
both positive and then the perturbation modules will
increase with the propagation distance monotonously; if

818,
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Fig. 2. Evolutions of perturbation modules with propagation
distance for different initial phases.

the initial phases satisfy 7/2 < ¢ < 7, the two functions
are both negative and then the perturbation modules will
decrease before increasing. When the initial phases sat-
isfy /2 < ¢o < m, it is at the initial evolution stage
0 <z < |etg(¢o)|/(1819}) and 0 < z < [tg(do)|/(|B|N%)
for the perturbation with the cut-off angular frequency
and zero angular frequency, respectively, that the normal-
ized modules will decrease before increase monotonously.

If the perturbation field « is regarded as a phasor,
the trajectories of the two perturbation phasors can be
plotted for different initial phases in the polar coordi-
nates. To make the variation tendency of the trajectories
more intuitive, the natural logarithms of the normal-
ized modules of the phasors are shown in Fig. 3, for
| = 2 (a) and & = 0 (b). The initial phases (the
angle between the rightward horizontal line and the line
segment connecting the start point of the curve and the
coordinate origin) corresponding to different trajecto-
ries used are: 7/8, /4, 37/8, 5.57/8, 6.57/8, 7.57/8,
—0.57/8, —1.57/8, —2.57/8, —5n/8, —3wx/4, —Tn/8
in Fig. 3(a) and 1.57/8, 2.57/8, 3.57/8, —w/8, —x/4,
—3x/8, —5.57w/8, —6.57/8, —7.57/8, —9x/8, —10%/8,
—117/8 in Fig. 3(b). The parameters of § and Qy used
in calculations are also the same as those in Fig. 1. It
can be seen from Fig. 3(a) that, for the perturbations
with cut-off angular frequencies, if the initial phases fall
into the first and second quadrants, the phase angles
will tend to 2nw (n = 0, £1, £2, ---) finally, oth-
erwise, they will tend to (2n + )7 (n = 0, x1, £2,
-+-). Similarly, according to Fig. 3(b), for the pertur-
bations with zero angular frequencies, the phase an-
gles whose initial phases fall into the second and third
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Fig. 3. The moving trajectories portrayed by the normalized
perturbation phasors of natural logarithm for different initial
phases.

quadrants will tend to 2nw — 7/2 (n = 0, 1, £2,

-+) eventually, otherwise, they will tend to 2nw + /2
(n =0, £1, £2, ---). It can still be seen from Fig.
3 that, whether the angular frequencies of the perturba-
tions are 0 or €1, if the initial phases fall into the first and
third quadrants, the perturbation modules will increase
monotonously, if the initial phases fall into the second
and fourth quadrants, some parts of the trajectories will
fall into the circle with the zero radius, which means that
the perturbation modules will decrease before increasing.
This increasing fashion of the perturbation modules is in
accordance with that of Fig. 2 and the foregoing analyt-
ical discussions.

In terms of the module and phase to describe the opti-
cal perturbation field travelling in the negative dispersion
regime of lossless optical fiber, using the linearized non-
linear Schrodinger equation governing the evolution of
perturbations within the small signal regime, the analyti-
cal expressions for the modules, phases, and the field gain
coefficients of the perturbations with zero and cut-off an-
gular frequencies have been deduced. The evolutions of
the modules and phases of the two special perturbations
with the propagation distance are investigated. The re-
sults show that, although the field gain coefficients of the
two special perturbations have zero asymptotic values,
and the increasing fashion of the amplitudes is different
from the familiar exponential type, the perturbations

have a divergent nature when the propagation distance
goes to infinity, indicating that the two perturbations can
both lead to instability. In addition, when the distance
gets long enough, the phases of the two special perturba-
tions will tend to their asymptotic values. Depending on
the different initial phases, some perturbation modules
may increase with the distance monotonously, and some
may decrease at first before increasing.
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