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Derivation of the modification heating conduction equation
of a kind of laser thermal effect by quantum mechanics
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The Fourier equation of heat conduction predicts a paradox that the effect of a thermal impulse (e.g. the
thermal effect in pulse laser) in an infinite medium; i.e., a thermal impulse is propagated in an infinite
velocity. In order to solve the thermal transport paradox, C. W. Ulbrich and M. Chester have proposed
the modification heat conduction equation respectively from different macroscopic viewpoint. This paper
derived the modification heat conduction equation according to phonon model and quantum mechanics

from microscopic viewpoint.
OCIS code: 140.6810.

It is well known that the Fourier equation of heat con-
duction predicts infinite velocity of propagation of ther-
mal impulsesl']. Obviously, this result is an absurd on
physics (i.e. famous paradox of heat transport). In order
to solve the heat transportation paradox, C. W. Ulbrich
and M. Chester have proposed the modification heat con-
duction equation respectively from different macroscopic
viewpoint!!2l. This equation (i.e. Chester modification
heat conduction equation) is
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where 7 is a relaxation time, ¢ is the heat capacity per
unit volume, K is the thermal conductivity (the Fourier
equation is %% — V2T = 0). It is clear that the Eq.
(1) resolves the dilemma of infinite propagation velocity
for a thermal signal. In fact, Eq. (1) predicts a finite ve-
locity for the propagation of thermal signal. The finite
velocity v, is given by
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The corresponding diffusion equation of Eq. (1) is
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where J is the heat current density. The physical mean-
ing of Eq. (3) is simple. It states that there is a finite
buildup time for the onset of thermal currenncy after a
temperature gradient is clamped onto a specimen. The
heat flow does not start instantaneously but rather grows
gradually with a relaxation time 7. Conversely, if a ther-
mal gradient is suddenly removed, there is a lag in the dis-
appearance of the heat current and Eq. (3) exhibits just
such a relaxation, whereas Fourier heat diffusion equa-
tion J = —K'VT does not. The relaxation time 7 is asso-
ciated with the communication “time” between phonons
(phonon-phonon collisions) for the beginning of resistive
flow.

As mentioned above, we knew that Eq. (1) is more rea-
sonable compare with Fourier heat conduction equation.

1671-7694/2003/070411-03

For the problem of conduction of thermal impulses we
should apply Eq. (1), rather than Fourier equation. For
heat effects of impulse laser, Eq. (1) is still suitable. In
order to apply Eq. (1) to laser heat effect more efficiently,
it is necessary to derive Eq. (1) from microscopic mech-
anism. M. Chester and C. W. Ulbrich obtained Eq. (1)
from macroscopic view. We can obtain Eq. (1) from mi-
croscopic viewpoint. In following paragraphs we will de-
rive Eq. (1) by means of quantum theory of solids from
microscopic viewpoint.

Although the Eq. (1) is more reasonable compare with
Fourier heat conduction equation, people always do not
like to use it, because it is very difficult to be solved. So,
in other paper, we will explain how to solve the Eq. (1)
in detail. It will be useful for people to apply Chester
modification heat conduction equation.

According to the quantum theory of solid and quan-
tum electrodynamics, when laser photons are cast on
a crystal, laser photon comes into non-elastic collision
with “public electron in the crystal”. After the collision,
the photon is absorbed by an electron. The energy of
the electron that had absorbed a photon raises and the
electron transits to higher energy level from original low
energy level. Where vector potential of incident light
A = Agexpli(Kp - — wt)]e + c.c.. We have

Hy, = % + V(r) and H = Hy + H' corresponding
Schrodinger equation is Hiyp = ifity;. According to Dirac
perturbation theory, the transition probability of the
electron from original state (i| to final state (f| in crystal
is

PG, f) = SE 1) PS(By ~ B,
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For absorbing transition, we have

(Sl =52 (f1a- Vi) = 5 S ag

xe~“H(fle™r e - V|i)]. (6)

In absorbing process, the energy of i-state and f-state
are E; = ¢;+fw and Ef = €y, respectively. So, the tran-
sition probability of the electron from i-state to f-state
is

P(i, f,0) = 2 AZ[(fle o - V)]

x8(ef — g — hw). (7

In Ref. [5], the absorption coefficient of bio-tissue
n(w) o« (fw — Ey)'/2/hw have been derived, where hw
is photon energy and E, is least energy gap between va-
lence band and conduction bandl®]. These electrons that
transited higher energy levels will interact with crystal
lattices. These interactions of the lattices-electron will
produce many higher energy phonons. This process can
be explained more clearly with the aid of a Feynman di-
agram 1. In Fig. 1 we represent the incoming electron
in a straight line with an arrow pointing to the left; the
interaction with the lattice vibrations is indicated by a
vertex; the emerging electron after interaction will be
shown again by a straight line with arrow; the emerging
phonon by a curly line with an arrow (see Fig. 1)[6]. Ac-
cording to the quantum theory of solids, the phonons can
be taken heat energy-carriers, and the heat conduction in
the crystal can be regarded as transportation process of
the phonons. In the phonons transportation process, the
thermal energy current density can be represented asl”

1 1
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where n;(q),v;q and w;q are respectively the phonon
number, the phonon group velocity and the phonon fre-
quency of j-group and wave vector=q in crystal, and the
phonon flux density N = 3 > n;j(q)vjq.

ja

According to the phonon theory, the phonon flux
density is related to the temperature gradient and the
phonon-phonon collision in crystal. There are three
phonons process in the phonon-phonon collision (see Fig.
2). In three phonons process, the vary rate of jq phonons
can be represented as!®!
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Fig. 1. Feynman diagram spontaneous emission of a phonon.
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Fig. 2. The processes or phonon-phonon interactions.

# 0, but in gen-

eral case the increment of phonon <<ctota,1 phonon num-
ber. So we can represent the total phonon number
n = ng + An, where ng is even phonon number in
heat balance (temperature is 7)), An is the increment
of phonon (owing to phonon-phonon collision)®-'%]. For
the increment An, we can use a representation by per-
turbation theory. The average number of phonon ng;(q)
under Bose distribution can be represented as

For disequilibrium state [—anét(q)

1
noj(a) = —z—— (10)
exp (Eﬁ%) -1
Because 8"“’9—’;@ = 0(no;(q) is not an explicit function

of t), and according to the relaxation time approximate
method of phonon theory and perturbation theory, we
can obtain[10]

SR

= —An;/7i(a), (11)

where 7;(q) is the relaxation time. According to prin-
ciple of conservation of energy, the total thermal energy
currency density

1
J= J() + v Z Anj:hwj: (q’)’l)jrql
jlql
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(12)

where second term represents thermal energy currency
density of “increased phonon” »” An;. According to the
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heat conduction theory for heat balance, the thermal en-
ergy currency density Jo can be represented as('!]

or
J()a = _ZKQ‘B@’ (13)
B

where Joo is o component of Jo, Kyg is a component of
thermal conductivity tensor of anisotropic medium. For
isotropic medium we have

Jo = —KyVT, (14)
where VT is temperature gradient, Ky is thermal con-

ductivity. According to Eq. (11), the second term in Eq.
(12) can be expressed as

= ——Zhwj

It is known that the thermal currency density has
statistic property. So we can use the expectation value
(7;) instead of relaxation time 7;, we obtain
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From Egs. (12), (14), (15) and (16) we obtain

8
J=—K\VT — ( atJ) 7. (17)

It is well known that the continuity equation for heat
transportation with density or pressure gradients is

T
c %— +V-J=0, (18)
where C' is the heat capacity per unit volume. Combined
(3) (or (17)) with (18) we can obtain the modification
heat conduction Eq. (1). We derived modification heat
conduction Eq. (1) from microscopic viewpoint.

From the derivation process mentioned above, we can
see that the modification heat conduction equation is an
approximation result from microscopic derivation. We
have also derived the nonlinear heat conduction equa-
tion from rough analysis (this equation is CT} —2T'VT —
VT +1CTy — KV2T = 0)['2 but that nonlinear heat
conduction equation is very difficult for real application.
Other necessary illustration is the value of 7. This is a
crucial parameter. According to the quantum theory of
solid, the relaxation time 7 is related to “thermal wave”
and temperature T etc. Hence the solution of Eq. (1) are
related to the relaxation time 7. Solving Eq. (1) is very
complex. About the solutions of the modification heat
conduction equation, we will explain in detail in other
paper.
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