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What causes the superluminal propagation of light pulses
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In this paper, we discuss what causes the superluminal propagation of a pulse through dispersion by
solving Maxwell’s equations without any approximation. The coherence of the pulse plays an important
role for superluminal propagation. When the pulse becomes partially coherent, the propagation changes
from superluminal to subluminal. The energy velocity is always less than the vacuum velocity. The shape

of the pulse is changed during the propagation.

OCIS codes: 270.5530, 030.1640, 260.2030, 320.5540.

Superluminal propagation is a phenomenon that the
group velocity of an optical pulse in a medium is greater
than the light speed in vacuum[!!. This phenomenon
has been discussed widely in many different medial?3].
However, what causes the superluminal propagation re-
mains much controversial. There are two different view-
points on the experimental results. One is that the
front and the back of the pulse undergo different gain
or attenuation[*=®. Another one contributes it to the
interference between the different frequency components
of the pulse, which undertake different phase shifts after
passing through a medium of anomalous dispersionl?-8].
We ask ourselves what is the nature of the superluminal
propagation, and use the partially coherent pulse to in-
vestigate this controversy.

In order to investigate the effects of coherence and
interference on the superluminal propagation, we intro-
duce a new kind of temporal partially coherent pulses.
Light field from any real source is not fully coherent!®].
For stationary fields, the theory of coherence has been
studied for a long timel®1°!, Recently, the theory of co-
herence for non-stationary fields is established!1:12]. The
correlation function of a pulse in space-time domain is
the key quantity for discussing partially coherent pulses.

The correlation function of a fully coherent
plane-wave pulsel® is defined by I'(z1,t1;22,82) =
E*(z1,t1)E(z2,t2). Decomposing the electric field into
Fourier components, we can write the correlation func-
tion for a fully coherent pulse as

1
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x exp{ilk(w2)zz — k™ (w1)z1]}

x exp{i(wits — watz)}dwidws, (1)

where k(w) is the complex wave vector and the general-
ized spectral density

W(0,w1;0,ws) = E*(0,w1) E(0,w2)
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X exp [_i(wltl - wztz)] dt;dts, (2)

with I"(0,%1;0,t2) the initial correlation function of the
pulse at z = 0. By using Egs. (1) and (2), we can obtain
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the evolution of the correlation function.

For a partially coherent pulse the correlation function
is defined[g] by F(Zl,tl;ZQ,tl) = (E*(Zl,tl)E(Zz,tz)),
where (...) represents the statistical ensemble average.
The evolution of the correlation function for partially co-
herent pulses is still controlled by Eqgs. (1) and (2). In
above and future discussion, we assume that the medium
is stationary.

For the fully coherent plane-wave pulses, we have

L(0,t1;0,t2) = [1(0,41)1(0,%2)]"/2 expliwo(t: — t2)]. (3)

For the partial coherent pulses, the temporal correlation
usually depends only on the time difference, and we as-
sume the initial correlation function be Gaussian,

PRY:
D(0, 130, £2) = [1(0,42)1(0, )]/ exp [—M]
4‘71:0

X exp[iwo (t1 — tz)], (4)

where oo is the correlation time width, a measure of
the correlations between two different space-time points.
Note that I(0,t;) = I'(0,¢;;0,¢;), (¢ = 2) (the initial in-
tensity of light field) is not dependent on oro. That is
to say, the space-time intensity profile of the pulse is
the same for any value of or9. We can call the pulse
defined by Eq. (4) a kind of Schell-Model plane-wave
pulsel?]. The completely coherent plane-wave light pulse
is obtained at the limit o790 — oo. In the opposite limit
oro — 0, all the space-time points become uncorrelated.

Now we consider the propagation of a partially coherent
pulse in a gain medium from z = 0 to L, and surrounded
by the vacuum. For simplicity we neglect the reflection.
The susceptibility of the gain medium is assumed a dou-
ble Lorentz oscillator!?],

~ M M
S w—wo—A+iy w—wo+A+iy’

x(@) (5)

where M is related to the gain coefficient, and « is the
spectral width of two gain lines. The parameters will be
used in this section are wp/27m = 3.5 x 104 Hz, M /27 =
2.262 Hz, v/27 = 0.46 x 10% Hz, A/27 = 1.35 x 105 Hz,
which are fit to the experimental data reported in Ref.[2].

Let us consider the propagation of partially coher-
ent Gaussian pulses. The initial intensity can be writ-
ten as 1(0,t) = exp(—t?/02;), with the pulse width
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0.0 = 1.2 x 107% 5. The initial correlation function of
the temporally partially coherent Gaussian pulse is

I'(0,%1;0,t2) = ex —t% ex _t%
5 01y YVy 02) — Y 20_20 p 20_30

(t1 —t2)?
X exp [_T%O]
x expliwo(t1 — t2)]. (6)

Substituting Eq. (6) into Eq. (2), we have

1
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The generalized spectrum depends on both .9 and
oro- When oo > 0,9, the light pulse is essentially fully
temporal correlated (fully coherent), and the width of
the generalized spectrum is determined by the temporal
width ;9. When o9 € 0,9, the light pulse is glob-
ally temporal un-correlated (incoherent), and the gen-
eralized spectral width is determined by the correlated
time width o7, and the generalized spectrum becomes
very broad. The intensity of the pulse is determined by
1(0,t) =T'(0,¢; 0,t), which is independent of or,9. Substi-
tuting Eq. (7) into Eq.(1), we can get the pulse evolution
through the medium. In Fig. 1 we plot the peak delay
time t4 as a function of the correlation time width org.
It is very clear that the time delay increases as the pulse
changes from almost fully coherent to almost incoherent.
The transition from superluminal to subluminal propa-
gation happens at oro = 200 ns.

The spectrum width Aw of a fully coherent pulse is re-
lated to its duration AT as Aw =~ 1/AT. For a partially
coherent pulse, we do not have its spectrum. However,
we can use W (w,w) as an equivalent power spectrum!?],
which depends on the correlation time width oz and its
duration AT. For the partially coherent Gaussian pulse,
the equivalent power spectrum width can be obtained
from Eq. (7), Aw = \/1/02, + 1/0%,, which increases as
the correlation time decreases. As the correlation time
decreases, the peak delay time reaches a maximum value
corresponding that the equivalent power spectrum of the
pulse covers the whole normal dispersion region besides
the central anomalous dispersion region, and then de-
creases to zero, because the equivalent power spectrum
width reaches the almost zero (small anomalous) disper-
sion region outside the normal dispersion region.

In the above, we have shown that the coherence of
the light pulses plays a very important role in super-
luminal propagations, and superluminal propagation
is a wave interference phenomenon. Reducing the co-
herence, the superluminal phenomenon will disappear.
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Fig. 1. Peak delay tq as a function of the correlation time
oro- The related parameters are shown in text.
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Fig. 2. Comparison of the shapes of the pulses after passing
through the medium with the initial shape. (a) For partially
coherent pulse (020=84.2 ns); (b) For fully coherent pulse.

Meanwhile, we note that the superluminal propagation
is always companied by amplification (due to the gain of
the medium). Now we examine what is the role of the
amplification.

In Fig. 2, we compare the shape of the pulse after
passing through the medium with the initial shape. The
pulse passing through the medium is rescaled so that it
contains the same energy as the initial one. Solid line is
the initial pulse, dash-dot line is the pulse after passing
through the medium, dash line is the difference. Figure
2(a) is for the partially coherent Gaussian (opo = 84.2
ns). The pulse is broadened after the medium. For the
fully coherent pulses (0 = 00), it is clear that the shape
is compressed (see Fig. 2(b)).

It should be pointed out that the shape compressed or
broadened is mainly due to the amplification and high or-
der of dispersion. For the pure amplification (without the
dispersion), the shape of the pulse through the medium
is symmetrical for the front part and the back part of the



January 20, 2003 / Vol. 1, No. 1 / CHINESE OPTICS LETTERS 49

e Y
4 \\

3(01)2)

Fig. 3. The energy velocity for the fully coherent Gaussian
pulse.

pulse, whatever the pulse is fully coherent or not. For the
pure dispersion (without the amplification), the shape of
the pulse through the medium is non-symmetrical due
to the properties of the dispersion (mainly due to the
higher-order dispersion), but the magnitude of distortion
induced by the dispersion is much smaller than that in-
duced by the amplification.
According to the definition of the energy velocity!'®,

o= —> (8)

- )
We + Wm

where we and wy, are the electric energy density and the
magnetic energy density, respectively. For the fully co-
herent Gaussian pulse, we use Eq. (8) to calculate the
energy velocity (see Fig. 3), and find that it is always
approximately equal to ¢ in the vacuum. No superlumi-
nality for the energy velocity has been found.

Although the intensity envelope is proportional to the
energy density, the energy velocity is not equal to the
group velocity. The energy density in the medium and
at the exit end comes from two contributions, one from
the income electromagnetic field and another from the

energy preserved in the medium. The energy velocity
determined by Eq. (8) is the propagating velocity of the
electromagnetic field energy of the wave only. So the
group and energy velocities are different.

In the linear media with dispersion and gain (or ab-
sorption), each Fourier component of the pulse propa-
gates independently. Each Fourier component obtains a
phase shift and is amplified (in gain media) or attenu-
ated (in absorptive media). However, the phase shifts for
different Fourier components are not the same, and the
amplifications (or attenuations) are also not identical.
Although each Fourier component propagates in a veloc-
ity is not faster than the ¢, the interference at the end of
the medium during the re-superposition of all frequency
components produces a new pulse which will appear in
advance (for anomalous dispersion) or delay (for normal
dispersion) compared with the pulse propagating in vac-
uum through the same distance.
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