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Abstract We present a theoretical study of the one-dimensional modulational instability of a broad optical beam 
propagating in a biased photorefractive crystal with both linear and quadratic electro-optic effects (Kerr effect) under steady-

state conditions.  One-dimensional modulational instability growth rates are obtained by treating the space-charge field 
equation globally and locally.  Both theoretical reasoning and numerical simulation show that both the global and local 
modulational instability gains are governed simultaneously by the strength and the polarity of external bias field and by the 
ratio of the intensity of the broad beam to that of the dark irradiance.  Under a strong bias field, the results obtained using 
these two methods are in good agreement in the low spatial frequency regime.  Moreover, the instability growth rate 
increases with the bias field, and the maximum instability growth occurs when ratio of light intensity to dark irradiance 
is 0. 88.
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1　Introduction
Photorefractive （PR） spatial solitons have been 

extensively investigated in the past two decades， in 
light of their unique features of formation on the order of 
a few mW and their important potential applications［1-4］.  
Various types of PR spatial solitons that arise from the 
change in refractive index due to only the linear electro-

optic effect （Pockels effect） in noncentrosymmetric PR 
crystals or the quadratic electro-optic effect （DC Kerr 
effect） in centrosymmetric PR crystals have been 
investigated both theoretically and experimentally［5-8］.  
Moreover， under proper conditions， PR spatial solitons 
and soliton pairs （or soliton families） governed by both 
the linear and quadratic EO effects have been proven to 
exist in many noncentrosymmetric PR crystals when the 

crystal temperature is close to its phase-transition 
temperature［9-12］.

Modulational instability （MI） refers to the interplay 
between nonlinearity and diffraction or dispersion in the 
spatial or temporal domain， which occur in most 
nonlinear optical wave systems［13-16］.  For a plane wave 
or broad optical beam that propagates in a nonlinear 
optical medium， spatial MI causes the incident beam to 
disintegrate during propagation， which in turn leads to 
the formation of multiple wave filaments.  The filaments 
resulting from the MI process can be considered as ideal 
soliton trains.  In other words， solitons are tightly 
connected to the MI.  Because MI typically occurs in 
the same parameter region in which bright solitons are 
observed， it is considered a precursor to soliton 
formation.  To date， MI has been systematically 
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investigated in biased photorefractive crystals owing to 
single- or two-photon photorefractive effect［17-20］.  Previous 
studies of MI in the context of photorefractive processes 
have been limited to photorefractive materials， in which 
the change in the refractive index is governed solely by 
the linear or quadratic electro-optic effect.  In fact， 
incident beams propagating in photorefractive media 
with both linear and quadratic electro-optic effects 
experience refractive index modulation， which can 
strongly influence MI.

In this paper， we present a theoretical study of the 
MI of broad beams in biased PR crystals with both 
linear and quadratic electro-optic effects by treating the 
space-charge field globally and locally， whereby both 
the one-dimensional global and local MI growth rates 
are obtained.  The properties of these MI growth rates 
that differ from previous results are discussed， and 
relevant examples are provided.

2　Theoretical model
In order to investigate the modulational instability 

of a broad optical beam in biased PR crystals with both 
the linear and quadratic electro-optic effects， we 
consider a broad optical beam that propagates along the 
z-axis， where the PR crystal is placed with its principal 
axes aligned with the x， y and z directions of the 
system.  The polarization of the broad beam and the 
external bias electric field are both assumed to be 
parallel to the x-axis.  For simplicity， only x-axis 
diffraction will be considered， and any loss effects are 
neglected in our analysis.

The optical field of the incident beam is expressed 
as the slowly varying envelopes E ( )x，z = x̂φ ( )x，z  
exp ( ikz)， where k= k0n e = (2π λ0 ) n e with n e being the 
unperturbed index of refraction and λ0 the free-space 
wavelength， and x̂ is the unit vector along x.  Under the 
above conditions， the optical beam［2，21］ satisfies the 
following equation

( i ∂
∂z + 1

2k ⋅ ∂2

∂x2 + k
n e

Δn) φ ( x，z)= 0. （1）

The change of nonlinear refractive index Δn is 
governed by

Δn= - n3
e r33E sc

2 - n3
e g eff ε2

0 ( )ε r - 1 2
E 2

sc

2 ， （2）

where φ ( x，z) is the slowly varying envelope of the 
optical beam and r33 and g eff are the linear and effective 
quadratic electro-optic coefficients of the PR crystal， 
respectively.  Further， k= k0n e = (2π λ0 ) n e with n e the 

unperturbed index of refraction and λ0 the free-space 
wavelength， and ε0 and ε r denote vacuum and relative 
dielectric constants， respectively.  By substituting 
Eq.  （2） into Eq.（1）， we obtain the following paraxial 
equation：

i ∂U
∂z + 1

2k
∂2U
∂x2 - β1E scU- β2E 2

scU= 0， （3）

where β1 = k0n3
e r33 2，β2 = k0n3

e g eff ε2
0 ( )ε r - 1 2 2， U=

(2η0 Id n e )-1 2
φ ( x，z)， and the power density of the 

broad beam has been normalized to the so-called “dark-

irradiance” Id， i. e. ， I=(n e 2η0 ) | φ| 2 with η0 =(μ0 ε0 ) 1 2
.  

Based on the transport model of Kukhtarev et al. ， the 
space-charge field E sc

［3］ in the material is approximately 
given by

E sc = E 0
1

[ ]1 + ||U 2 (1 + ε0 ε r

eNA
⋅ ∂E sc

∂x )-

KBT
e

[ ]∂ ||U 2 ∂x

[ ]1 + ||U 2
+ KBT

e
⋅ ε0 ε r

eNA
⋅

(1 + ε0 ε r

eNA

∂E sc

∂x )-1 ∂2E sc

∂x2 . （4）

For the bright type， |U | 2 = 0 at x→ ±∞， where 
E 0 represents the value of the space-charge field at 
x→ ±∞， i. e. ， E 0 = E sc( x→ ±∞，z)， e is the 
charge， KB is Boltzmann’s constant， T is the absolute 
temperature， and NA is the acceptor or trap density.  It 
is worth noting that the diffusion term (2k)-1 (∂2U ∂x2 ) 
and the spatial derivatives of E sc and U can be omitted 
in Eqs.  （3） and （4）， because U remains relatively 
constant over a large range of x for broad beams.  Under 
the above conditions， the space-charge field E sc is given 
by

E sc = E 0

1 + ||U 2 . （5）

We begin our analysis by treating the space-charge 
field equation in Eq.  （4） globally.  In this case，

U= r 1 2 exp{ - i{[ β1E 0 ( )1 + r ]+

[ β2E 2
0 ( )1 + r

2 ] }z}， （6）

where r is defined as r= Imax Id = I ( )0 Id.  In what 
follows， we discuss the stability of the above solution 
by making the following ansatz：

U= [ r 1 2 + ε ( x，z) ] exp{ - i{[ β1E 0 ( )1 + r ]+

[ β2E 2
0 ( )1 + r

2 ] }z}， （7）
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here ε ( x，z) represents an added weak spatial 
perturbation term and satisfies the condition || ε ( )x，z ≪ 
r 1 2.  Substitution of Eq.  （7） into Eqs.  （3） and （4） 
yields:

i ∂ε
∂z + 1

2k
∂2 ε
∂x2 - [ β1 + β2(E+ 2E 01) ] ( r 1 2 + ε) E= 0，

（8）

E- υ
∂E
∂x - Δ ∂2E

∂x2 = - r 1 2

( )1 + r

é

ë

ê
êê
êE 01 ( ε+ ε*)+

KBT
e ( ∂ε

∂x + ∂ε •

∂x ) ùûúúúú， （9）

where E= E sc - E 01， E 01 = E 0 ( )1 + r ， υ= E 01 

( ε0 ε r eNA )， Δ = (KBT e ) ( ε0 ε r eNA ).  The space-

charge field in the spatial-frequency space Ê can then be 
obtained by employing the Fourier transform， satisfying

Ê= - r 1 2

( )1 + r
⋅

ì
í
î

ïïïï

ïïïï

E 01 + i [ ]υE 01 kx + kx ( )KBT e ( )1 + Δk 2
x

( )1 + Δk 2
x

2 + k 2
x υ2

ü
ý
þ

ïïïï

ïïïï
⋅

( ε̂+ ε̂ •)， （10）
where ε̂ is the Fourier transform of the spatial 
perturbation in the spatial-frequency space.  The spatial 
perturbation ε ( x，z) can be expressed as the sum of the 
following two terms：

ε= a ( z) exp ( ipx)+ b ( z) exp ( - ipx). （11）
It is easy to show that
( ε̂+ ε̂ •)= 2π [ (a+ b*) δ (kx - p)+ (b+ a*) ⋅

δ (kx + p) ]， （12）
where δ (kx) is the delta function.  Substituting this 
form of ( ε̂+ ε̂ •) back into Eq.  （10） and taking an 
inverse Fourier transform allows the space-charge 
field in real space to be obtained from the following 
equation：

E= - r 1 2

1 + r (a+ b*) ⋅

E 01 + i [ ]υE 01 p+ p ( )KBT e ( )1 + Δp2

( )1 + Δp2 2
+ p2υ2

exp ( ipx) -

 r
1 2

1 + r (a
* + b)

E 01 - i [ ]υE 01 p+ p ( )KBT e ( )1 + Δp2

( )1 + Δp2 2
+ p2υ2

⋅

exp ( - ipx). （13）
In order to simplify calculations， G ( p) is defined 

as

G ( p)= r
1 + r

E 01 + i [ ]υE 01 p+ p ( )KBT e ( )1 + Δp2

( )1 + Δp2 2
+ p2υ2

.

（14）
Eq.  （13） then reduces to

E= -r-1 2[G ( p) (a+ b*) exp ( ipx)+ G *( p) (a* +

b) exp ( - ipx) ]. （15）
By substituting Eqs.  （11） and （13） into Eq.  （8） 

and keeping only the synchronous terms， we obtain to 
the following coupled differential equations：

i da
dz - p2

2k a+ ( β1 + 2β2E 01)G ( p) (a+ b*)= 0，（16a）

i db
dz - p2

2k b+ ( β1 + 2β2E 01)G *( p) (a* + b)= 0.（16b）

We then decouple Eqs.  （16） into an equivalent set 
of ordinary differential equations as follows：

d2a
dz2 = é

ë
ê
êê
ê p

2

k ( β1 + 2β2E 01)G ( p)- p4

4k 2

ù

û
úúúú a，（17a）

d2b
dz2 = é

ë
ê
êê
ê p

2

k ( β1 + 2β2E 01)G *( p)- p4

4k 2

ù

û
úúúú b.（17b）

From these two equations， we can directly obtain 
the global modulational instability gain ggl as

ggl = Re
ì
í
î

ïï

ïï

é

ë
ê
êê
ê p

2

k ( β1 + 2β2E 01)G ( p)- p4

4k 2

ù

û
úúúú

1 2ü
ý
þ

ïïïï

ïï
，（18）

where Re{ ⋅ } denotes the real part of a complex 
variable.  From Eq.  （13）， it is clear that the MI gain is 
an even function of p， and that its value reaches zero 
at p= 0.

The local MI process deserves special 
consideration.  In the next section， the local MI process 
is investigated theoretically by neglecting higher-order 
effects in the space-charge field.  Under strong bias 
conditions， for a broad incident optical beam the 
diffusion effect can be neglected； that is， all terms 
associated with the diffusion process （i. e. ， KBT 
terms） may be omitted in Eq.  （4）.  Additionally， the 
dimensionless term ( ε0 ε r eNA ) (∂E sc ∂x ) is typically 
significantly less than unity［17］.  Accordingly， the paraxial 
Eq.  （3） reduces to

i ∂U
∂z + 1

2k
∂2U
∂x2 - β1E 0

U

1 + ||U 2 -

β2E 2
0

U

( )1 + ||U 2 2 = 0， （19）

Eq.  （19） takes the form of a nonlinear Schrödinger 
equation with a saturable nonlinearity.  In our preliminary 
work， we obtained the solitary wave solutions of dark， 
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bright， and grey solitons in a steady-state regime， 
various of whose characteristics and properties have 
been discussed in detail elsewhere［9-10］.  In what follows， 
by introducing Eq.  （7） into Eq.  （19） and linearizing it 
in ε， the local MI properties of Eq.  （19） can be 
investigated using the following evolution equation.

i ∂ε
∂z + 1

2k
∂2 ε
∂x2 + β1E 0

r

( )1 + r
2 ( ε+ ε •)+

2β2E 2
0

r

( )1 + r
3 ( ε+ ε •)= 0. （20）

Substituting Eq.  （11） into Eq.  （20）， we obtain

i da
dz - p2

2k a+ β1E 0
r

( )1 + r
2 (a+ b*)+

2β2E 2
0

r

( )1 + r
3 (a+ b*)= 0， （21a）

i db
dz - p2

2k b+ β1E 0
r

( )1 + r
2 (a* + b)+

2β2E 2
0

r

( )1 + r
3 (a* + b)= 0. （21b）

The above equations can be decoupled into an 
equivalent set of ordinary differential equations：

d2a
dz2 =

ì
í
î

ïïïï

ïïïï
- p4

4k 2 +
é

ë

ê
êê
ê
ê
ê
β1E 0

r

( )1 + r
2 +

2β2E 2
0

r

( )1 + r
3

ù

û

ú
úú
ú
ú
ú p2

k

ü
ý
þ

ïïïï

ïïïï
a， （22a）

d2b
dz2 =

ì
í
î

ïïïï

ïïïï
- p4

4k 2 +
é

ë

ê
êê
ê
ê
ê
β1E 0

r

( )1 + r
2 +

2β2E 2
0

r

( )1 + r
3

ù

û

ú
úú
ú
ú
ú p2

k

ü
ý
þ

ïïïï

ïïïï
b， （22b）

and the local MI gain can be obtained directly from 
Eq.  （23）：

g lc = Re
ì

í

î

ïïïï

ïïïï

é

ë

ê

ê
êê
ê

ê
- p4

4k 2 + ( β1E 0
r

( )1 + r
2 +

2β2E 2
0

r

( )1 + r
3 ) p2

k

ù

û

ú
úú
ú
ú
ú

1 2ü

ý

þ

ïïïï

ïïïï
. （23）

Moreover， the maximum MI gain and its associated 
spatial frequency can be readily determined as follows：

gmax = k0n3
e r33E 0

2
r

( )1 + r
2 + k0n3

e g eff ε2
0 ( ε r -

1) 2
E 2

0
r

( )1 + r
3 ， （24）

pmax = k0n2
e

1 + r

ì
í
î

ïï

ïïïï
E 0 r

é

ë

ê
êê
ê
ê
ê
r33 + 2g eff ε2

0 ( )ε r - 1 2
E 0

1 + r

ù

û

ú
úú
úü
ý
þ

ïïïï

ïïïï

1 2

.（25）

3　Results and discussions
To illustrate our results， we consider a single 

PMN-0. 33PT crystal that exhibits maximal 
transparency， very good optical clarity， and low 
propagation loss.  The parameters of PMN-0. 33PT are 
n e = 2. 562， r33 = 182 pm/V， g eff = 0. 06 m4 ⋅ C-2， ε r =
5378， NA = 3. 7 × 1022 m-3［22-25］.  The other parameters 
are set as λ0 = 632. 8 nm and x0 = 40 μm.  Based on 
these parameters， β1 = 0. 0152， β2 = 1. 1354 × 10-8， 
and k= 2. 5439 × 107.

Figs.  1 and 2 show the dependence of the global 
and local MI gains （i. e. ， ggl and g lc） on p k with three 
different values of E 0 for the same r， where the 
dimensionless ratio p k represents the angle （in radians） 
at which the plane-wave components of the ε ( x，z) 
perturbation propagate with respect to the quasi-plane-

wave optical beam.  From these two figures， it is 
evident that the two MI gains increase with increasing 
E 0.  Given that both gains are symmetrical about p， 
only the positive branch will be considered in our 
subsequent analyses.  From Fig.  1， we can observe 
that the global MI gain curve reaches two different 
peaks： one appears in the low spatial-frequency 
domain， defined as gp1， and the other occurs in the high-

frequency region， defined as gp2.  Moreover， it is 
evident that both E 0 and r affect these two different 
peaks.  Next， we study the effects of E 0 and r in 
isolation on MI gains using a variable-controlling 
approach.

We begin with the effect arising from the biased 
field E 0.  Fig.  3 depicts the curve of the global MI gains 
versus E 0 associated with the two global peaks p1 k and 

Fig.  1　Global MI gains as a function of p k when r= 1
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p2 k.  Unlike the cases investigated previously， we find 
that the global MI gains are asymmetric with respect to 
the polarity of E 0， that is， the global MI gains depend 
not only on the absolute strength of E 0， but also on the 
polarity of the external bias electric field E 0.  This is 
because the global MI gains are governed by both linear 
and quadratic electrooptic effects.  By altering the 
polarity of E 0， the sign of the linear electro-optic term 
( β1E 0 ∝ E 0) changes as well.  However， the sign of the 
quadratic electro-optic term ( β2E 2

0 ∝ E 2
0 ) is not 

influenced by the polarity change of E 0， so in the case of 
an externally biased field of equal magnitude but 
opposite polarity， the photorefractive effect is 
weakened and even counteracted by the interaction 
between the linear and quadratic electric-optic effects.  
Global MI gains can also be adjusted by altering the 
polarity of E 0 in addition to changing its strength.  
Furthermore， Fig.  3 shows that gp1 exceeds gp2 when 
E 0 > 1 × 105 V m with the positive bias field.

In addition， Fig.  4 illustrates the dependence of 
the global MI gain peak gp1 and gp2 on r for E 0 = 1. 8 ×
105 V/m.  As shown in Fig.  3， gp1 and gp2 attain their 
maxima at r≈ 1.  Moreover， the peak gp1 decreases 

rapidly when r≪ 0. 1 and r≫ 10， and all gp1 and gp2 
tend to be stable for r≫ 10.

Fig.  5 shows the variation of the two gain peaks 
gp1 and gp2 as a function of both E 0 and p k when r= 1， 
from which we can see that in the low bias voltage 
region gp1 < gp2， and gp1 will exceed gp2 when E 0 is 
higher than a certain value.  Moreover， in the low 
spatial-frequency domain gp1 tends to increase linearly 
with increasing E 0； however， gp2 increases slowly in the 
high spatial-frequency domain under different p k 
conditions.  In fact， under strong bias conditions the MI 
process should be treated with the local process and 
Eqs.  （16） can be simplified to Eq.  （21）.

Fig.  6 shows the dependence of the global gains ggl 
on p k with different r in the case of E 0 = 1. 8 ×
105 V/m.  The maximum value of ggl（i. e. ， gmax） 
appears in the low-spatial-frequency domain when r is 
small； however， gmax arises in the high-spatial-
frequency regime when r is relatively large.

In contrast to the results obtained previously， we 
find that both gmax and pmax follow the quadratic 

Fig.  5　Dynamical evolution of the global gp1 and gp2 versus both 
E 0 and p k when r= 1

Fig.  2　Local MI gains as a function of p k when r= 1

Fig.  4　 Dependence of the global MI gains associated with the 
two global peak spatial-frequencies p1 k and p2 k on r 

when E 0 = 1. 8 × 105 V/m

Fig.  3　 Dependence of the global MI gains associated with the 
two global spatial-frequencies peaks p1 k and p2 k on E 0 

when r= 1
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polynomials of E 0， and the maximum MI gains increase 
rapidly with an increase in the external bias field 
according to Eqs.  （24） and （25）， respectively.  In 
addition， the MI gain can be adjusted by altering the 
polarity of the external bias field， even for the same bias 
field strength.  Moreover， further analysis of Eqs.  （24） 
and （25） shows that gmax and pmax reach a maximum 
when r= 0. 88.

4　Conclusions
We investigated the one-dimensional modulational 

instability of a broad optical beam propagating in biased 
PR crystals with both linear and quadratic electro-optic 
effects under steady-state conditions.  Both the one-

dimensional global and local MI growth rates were 
obtained by treating the space-charge field equation 
globally and locally.  It was shown that the global and 
local modulational instability gains were governed 
simultaneously by the strength and polarity of the 
external bias field and the ratio of the intensity of the 
broad beam to that of the dark irradiance.  This means 
that the spatial period of spontaneously generated 
filaments can be controlled by adjusting the factors 
mentioned above.  Moreover， under a strong bias field， 
the results obtained from these two methods were in 
good agreement in the low spatial frequency regime.  
The instability growth rates increase with the bias field， 
and the maximum instability growth occurs at r= 0. 88.
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