激光雷达系统中脉冲整形电路研究

陈星驰^{1,2,3},于笑楠^{1,2},佟首峰^{1,2}*,赵佰秋^{1,2}

¹长春理工大学空间光电技术国家与地方联合工程研究中心,吉林长春 130022; ²长春理工大学空地激光通信技术国防重点学科实验室,吉林长春 130022;

3长春理工大学光电工程学院, 吉林 长春 130022

摘要 阐述了激光雷达系统中脉冲整形电路的作用,设计了基于恒比定时法和基于脉冲峰值检波法的脉冲整形电路,在实验室及室外条件下对两种脉冲整形电路的性能进行分析,验证了不同脉冲整形电路在激光雷达系统中的性能。结果表明,恒比定时电路与峰值检波电路都拥有亚 ns级的时间鉴别能力,恒比定时电路的时间鉴别能力受距离、回波脉冲幅度影响很小,检测精度仍需继续优化。本研究为激光雷达系统的测距精度优化提供了参考。 关键词 传感器;激光雷达;时间间隔测量;脉冲整形;恒比定时电路;峰值检波 中图分类号 TN958.98 文献标志码 A doi: 10.3788/LOP57.192804

An Investigation on a Pulse-Shaping Circuit in Lidar Systems

Chen Xingchi^{1,2,3}, Yu Xiaonan^{1,2}, Tong Shoufeng^{1,2*}, Zhao Baiqiu^{1,2}

 1 National and Local Joint Engineering Research Center of Space Optoelectronics Technology,

Changchun University of Science and Technology, Changchun, Jilin 130022, China;

 $\label{eq:alpha} ^{2} \ \textit{National Defense Key Discipline Laboratory of Open Space Laser Communication Technology} \, ,$

Changchun University of Science and Technology, Changchun, Jilin 130022, China;

³ School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China

Abstract This study investigates the role of shaping circuits in lidar systems. Two types of pulse-shaping circuits based on the constant-ratio timing and pulse peak detection methods are designed. Performance experiments on the above mentioned pulse-shaping circuits are carried out in a laboratory and under external conditions to investigate the performance of different pulse-shaping circuits in lidar systems. The circuits based on the constant-ratio timing and pulse peak detection methods show sub-ns time discrimination capabilities. The time discrimination capability of the constant-ratio timing circuit is slightly affected by distance and echo pulse; therefore, the detection accuracy needs to be optimized. This study provides a reference for the optimization of the ranging accuracy of lidar systems. **Key words** sensors; lidar; time interval measurement; pulse shaping; constant-ratio timing circuit; peak detection **OCIS codes** 280.3640; 280.1310; 280.4788

1 引 言

相较于毫米波雷达,脉冲激光雷达在探测距离、探测精度等方面有着很大的优势,在无人驾驶、防撞系统、地形的勘察与测绘导航等方面得到了广泛的应用。 为提高激光雷达系统的探测精度,可以使用更高速、高精度的时钟进行计时,完成更高精度的时间测量,其中,对回波信号进行更准确的判决是进行计时的前提条件。因空间损耗、大气衰减等原因,系统中回波信号 的幅度起伏波动,会引起时间判决误差。如何进行准确、稳定的时间判决是脉冲激光雷达的关键技术之一。

脉冲激光测距中的时间判决有两类:一类是使 用高速模拟数字转换模块进行高速模拟信息采集, 通过高速时钟检测出脉冲跳变沿的位置,但这种方 法要想达到 ns 级别的时间判断,则需要使用 GHz 以上频率的时钟对回波信号进行采样^[1-2];另一类是 使用整形电路先对回波脉冲进行信号整形,再对整 形后的信号进行时间计算,这种方法需要高精度的

收稿日期: 2020-02-04; 修回日期: 2020-02-19; 录用日期: 2020-03-06

^{*} E-mail: cxcxcdyg@163.com

脉冲整形方式,获得准确的脉冲沿信息^[3-4]。常用的 电路整形方式有浮动阈值、峰值检测、恒比定时等。 2009年北京理工大学的刘鹏等^[5]分析并测试了恒 比定时电路对不同幅度信号的判决效果,他们使用 的恒比定时电路在输入信号有大幅度变动(0.5~ 1.5 V,3 倍变化幅度)时,恒比定时电路的判决结果 会产生 2 ns 的变化;2012 年南京理工大学黄钊^[6]设 计的浮动阈值整形方式在脉冲测距中可实现 3 ns 的测距精度;2013年南京理工大学李枭[7]使用峰值 检测电路进行测试,发现脉冲前沿波形饱和时会对 峰值检测整形方式造成最小 6 ns 的影响;2014 年上 海技术物理研究所程鹏飞^[8]验证了恒比定时电路在 远距离下的判决稳定程度,该研究使用的恒比定时 电路在目标距离 20 m 至 4 km 的条件下均能保持 1 ns 的测量精度。本文主要讨论激光雷达研制过 程中的信号整形问题,分析对比峰值判决和恒比定 时整形电路的机理及特点,通过实验验证测距电路 的整形性能,为提升激光雷达的性能提供参考。

2 激光雷达架构

2.1 激光雷达方程

激光雷达主要由激光器、探测器、角度执行机构、整形电路、计时电路和总控制器组成。总控制器 将调制信号传给激光器,激光经过振镜调整发射角度,在目标物体表面漫反射后由探测器接收,探测器 后的回波放大电路将探测器收到的信号放大后发送 给整形电路,经过整形后的信号被送入计时电路部 分与激光器调制信号进行时间比对,以获得脉冲飞 行时间,完成一次距离信息测量。为了得出激光雷 达系统的最大探测距离,需要对链路进行预算。本 实验的激光器中使用的是 OSRAM 公司生产的 SPL_LL_90-3 激光管,该激光器出射光波段的中心 波长为 905 nm,在发射脉冲激光时峰值功率可以达 到 70 W,激光雷达链路距离计算公式为

$$P_{\rm r} = P_{\rm t} \frac{A_{\rm r} \rho \cos \varphi}{\pi R^2} T_{\rm t} T_{\rm r} T_{\rm a}, \qquad (1)$$

式中: P_r 为激光雷达探测器接收到的激光功率; P_t 为激光器的发射光功率; A_r 为接收端光学部分面积; ρ 为目标物体表面反射率; φ 为目标物体表面与光轴 的夹角;R 为激光雷达与目标物体的距离; T_t 、 T_r 、 T_a 分别为发射、接收、传输系统的效率。前端光学系统 束散角 θ =5 mrad,收发端光学口径 D 为 22 mm 时, 可以通过衍射极限角公式 θ =2×1.22 λ /D 计算出衍 射极限角为 0.1 mrad,其中 λ 为 905 nm。

当前系统的衍射极限角为 0.1 mrad,小于当前 系统束散角(5 mrad),因此该口径与束散角选取符 合该系统设计要求。同时,束散角选择为 5 mrad, 若采用点-线式进行扫描,扫描范围为横向 10°,纵向 8线,此时扫描一幅图像需经过 16000 个采样点,当 前系统中激光测距重复频率为 10 kHz,每 1.6 s 可 以进行一次完整图像扫描,因此该束散角与光学口 径选择适用于所设计的激光雷达系统。

若目标物体反射率不低于 20%,在目标反射面 积大于光斑面积且距离我方 300 m 时,根据(1)式 可求出接收到的脉冲光功率为 17.56 nW,同时当目 标距离小于 7 m 时,系统能量达到饱和,导致检测 能力明显降低。探测目标距离与最终到达雪崩光电 二极管(APD)的光功率曲线如图 1 所示。

Fig. 1 Relationship between detection distance and received power of detector

2.2 脉冲展宽影响分析

脉冲激光在时域上服从高斯分布,任一时刻的 脉冲瞬时功率可以表示为

$$P_{x} = A \exp\left[-\frac{(x - x_{0})^{2}}{2\sigma^{2}}\right], \qquad (2)$$

式中: P_x 为x时刻对应的瞬时功率值;A为该脉冲 信号在能量最大时的功率,也就是峰值功率; x_0 为 峰值功率对应的时刻; σ 为均方根宽度。设 $P_x =$ 0.5A时,可求出该脉冲信号的半峰全宽:

$$T_{\rm FDHM} = 2(x - x_0) = 2\sigma \sqrt{2 \ln 2} = 2.3548\sigma_{\circ}$$
(3)

由(3)式可知, T_{FDHM} 为 20 ns 时, σ 为 8.49329 ns。在 1~300 m 的测量范围内,距离越远 回波能量越低,接收信号脉冲峰值功率最大值可以 达到脉冲峰值功率最小值的 9×10⁴ 倍。将 $P_x =$ 0.5A 和 $P_x = \frac{0.5}{9\times10^4} A$ 分别代入(3)式进行计算, 得到若在最小回波脉冲峰值功率一半的位置设定门 限,可算出回波信号脉冲宽度为 20 ns,但在目标距 离减小,回波脉冲幅度增大后,再使用最小回波脉冲 峰值功率的一半当作门限阈值时,获得的脉冲宽度 为 83.5654 ns。

从图 2 可以看出,当脉冲宽度相同时,若以固定 门限进行判决,回波脉冲幅度的变化将会对判决结 果造成几纳秒至几十纳秒的误差,对最终判决结果 造成米级的误差。

2.3 实验系统搭建

激光测距性能测试实验在室内条件下搭建,分 别对两种整形电路进行性能测试,实验中使用的激 光测距系统如图 3 所示,由于是在室内条件进行测 试,为避免近距离回波能量过高的情况,激光发射端 未加入所设计的光学系统来减小束散角,仅加入单 个光学镜片进行准直。

图 3 激光测距系统示意图。(a)激光测距系统总体框图;(b)激光测距系统搭建实物图 Fig. 3 Schematic of laser ranging system. (a) Overall block diagram of laser ranging system;

(b) picture of laser ranging system

3 设计与实验

3.1 电路设计

3.1.1 峰值检波法

对于同一时刻接收的同脉冲宽度的脉冲信号,脉 冲幅度会影响同一时间检测到的信号幅度,从而影响 固定门限的判决结果。对于这些同一时刻到达的脉冲信号,它们的峰值位置携带了该信号的准确到达时间。因此,找到脉冲峰值时刻对应的时间信息,就能得到回波脉冲信号的准确到达时刻信息^[9-11]。

峰值检波整形电路中首先需要对接收到的脉冲 信号进行转换,使用电容、电阻构成的微分电路,将 接收到的脉冲信号转换为图 4 所示的交流信号,在 经过转换后,脉冲的尖峰将转换为该交流信号中间 的过零位置。将该信号与零值进行比较得出判决信 号后,由高精度时间计数器判读该信号的跳变沿,获 得真实的时间信息。为防止噪声信号触发此系统的 判决门限,首先对回波信号进行一次门限判决,作为 脉冲峰值信号的触发区域,再由该门限对检波电路 进行判决,完成峰值检波整形电路整形工作。

图 4 峰值检波中使用的微分电路。(a)微分电路示意图;(b)微分电路输出波形 Fig. 4 Differential circuit used in peak detection. (a) Schematic of differential circuit; (b) output waveform of differential circuit

如图 5 所示,探测器接收后放大的回波信号,通 过 SMA 连接器输入到整形模块,整形模块中使用 的比较器芯片为 Max9601,该芯片由两个比较器集 成,即比较器 A、B 端,这两个比较器在设计中可以 进行配合使用,本系统中使用这两个比较器进行级 联,以实现所需功能的设计。接收到的信号分为两 路,一路送入比较器 B 端,与已设定好的阈值进行 比较,在比较器 B 端输出引脚得到该脉冲到来时的 信息,并连接至比较器 A 端的启动控制引脚,该信 息的作用是使用一个固定的触发门限过滤掉噪声, 在实际测试中通过调整接收信号数据的有效阈值, 可以有效消除电路中噪声对测距的误触发情况;另 一路利用微分电路进行一次高通滤波,提取出接收 到的脉冲信号的边沿信息,上升沿变为零点以上的 脉冲信号,下降沿变为零点以下的脉冲信号,并输入 比较器A端。

该方案的特点就是在脉冲峰值检波电路的设计 中增加了一个可调节的门限,如图 6 所示,其中 u 为电压,t 为时间。该门限可以消除噪声对系统的 误触发,同时尽可能地减少门限对系统灵敏度的影 响,保证该系统的最大探测距离未被降低。

3.1.2 恒比定时法

恒比定时法具有恒定的信号幅度触发比,解决了 固定门限时不能达到最好的触发比而导致时刻鉴别 错误的问题。该方法将输入信号分为两路相同的信 号进行处理,对其中一路进行比例衰减,另一路进行

Fig. 5 Schematic of peak detection shaping method

延迟,再将这两路信号作反向叠加,进行过零甄别,由 于衰减后的信号脉冲上升沿斜率与延迟后的信号脉 冲上升沿斜率成比例关系,因此可以在反向叠加的信 号零值时刻得到脉冲上升沿固定某比例位置的时刻 信息,从而发送出时刻鉴别模块需要的准确时间^[12]。

如图 7(a)所示,detector signal 为探测电路接 收的放大后信号,attenuated signal 为对该接收信号 进行衰减后的信号,delayed signal 为对接收信号延 迟后的信号,当回波信号幅度不同时,延迟信号与衰 减信号的相交位置不变。对于同脉宽不同幅度的脉 冲信号,当脉冲沿形状不变时,利用恒比定时方法鉴 别出的脉冲到来时刻是恒定的。如图 7(b)所示,在 回波脉冲能量过高导致接收信号出现饱和的情况 下,恒比定时电路对于接收信号仍有判决效果,但在 判决时会出现较小误差。若接收信号出现过饱和的

Time /ns

detector signal

delayed signal
 attenuated signal

用高精度 AD 采集模块对信号进行拟合处理^[13]。 若把回波信号近似看作高斯波形,该信号的前

沿波形方程为
$$f_{t} = A \exp\left(\frac{-t^{2}}{2\tau^{2}}\right), \qquad (4)$$

式中:*t* 为时间; *τ* 为与脉宽相关的常数。衰减信号 (衰减 α 倍)与延迟信号(延迟 *t*。时长)相交的时间 *t*₁ 为

$$t_1 = \frac{2\tau^2 \ln \alpha + t_c^2}{2t_c}.$$
 (5)

从(5)式可以看出,时间 t₁和信号的峰值功率 A 没有关系,所以该方法可以消除回波信号幅度引 起的时间误差^[5]。 如图 8 所示,外来信号通过 SMA 连接器进入 恒比定时整形电路模块后被分为三路。通过电阻对 第一路信号进行分压,得到衰减后的信号,并将其发 送给比较器 Max9601 的 A 端。对第二路信号进行 延迟,延迟器件选用 PCAelectronics 公司生产的 EP6400-1 芯片,使用该芯片可以产生 1~10 ns 的 延迟,将该延迟后的信号连接至比较器 A 端与衰减 后的信号进行运算。将延迟后的信号与衰减的信号 在比较器中作差,作差后的信号进入比较器进行过零 判断,生成携带接收脉冲边沿信息的比较器输出信 号。将第三路信号直接输入比较器 B 端,与比较器 B 端的门限阈值电平进行比较,生成比较器输出数据有 效信号,用于消除电路中噪声对测距的误触发情况。 比较器输出的数据与有效信号在与门 SN74F08D 中 进行与运算,最终得到整形后的 TTL 信号。

Time /ns

detector signal delayed signal attenuated signal

-2.5

图 7 不同输入信号幅度下恒比定时整形方式原理图。(a)输入信号未饱和;(b)输入信号饱和

图 8 恒比定时整形电路波形分析

Fig. 8 Waveform analysis of constant-ratio timing shaping circuit

3.2 实验数据

3.2.1 峰值检波电路测试

峰值检波电路装调过程中,对回波信号、高通滤波

后的信号、比较器输出信号和最终整形出的 TTL 信号 进行测量,得到各测试位置的电平情况见图 9 和图 10。 可以看出,各测试位置信号情况均与设计情况符合。

图 9 峰值检波电路输入信号。(a)峰值检波电路回波放大后的信号;(b)经过微分电路后的信号

Fig. 9 Input signal of peak detection circuit. (a) Received and amplified signal in the peak detection circuit;(b) signal after differential circuit

图 10 峰值检波电路输出信号。(a)峰值检波电路比较器输出 PECL 信号;(b)峰值检波整形模块输出的 TTL 信号 Fig. 10 Output signal of peak detection circuit. (a) PECL signal output by the comparator in the peak detection circuit; (b) TTL signal output by the shaping module in the peak detection circuit

实验中通过将反射板移动至不同距离进行测试,测试结果如表1所示,可以看到随着实际测试距

离变化,本实验中激光雷达的精度发生变化,在 40 m的距离处时间误差为 250 ps。

表1 使用峰值检波电路时激光测距系统测试数据

Table 1 Test data of laser ranging system using peak detection circuit

Test distance /m	Test result /m	Range error /mm	Timing error /ps
10	9.996	4	12
15	15.038	38	127
20	20.044	44	147
25	25.015	15	50
30	29.958	42	140
35	35.068	68	227
40	40.075	75	250

3.2.2 恒比定时电路测试

在恒比定时电路调试过程中,对恒比定时电路 进行测试,对电路中窄脉冲信号、回波信号和最终整

形出的 TTL 信号进行测量,得到各位置的电平情况(图 11)。同样经过反射板进行距离标定,得到了 不同距离处测试距离与实际距离的对比(表 2)。

图 11 恒比定时电路测试结果。(a)恒比定时电路回波放大后的信号;(b)恒比定时整形模块输出的 TTL 信号

Fig. 11 Test results of constant-ratio timing circuit. (a) PECL signal output by the comparator in the constant-ratio timing circuit; (b) TTL signal output by the shaping module in the constant-ratio timing circuit

表 2 使用恒比定时电路时激光测距系统测试数据

Table 2 Test data of laser ranging system using a constant-ratio timing circuit

Test distance /m	Test result /m	Range error /mm	Timing error /ps
10	10.037	37	123
15	15.017	17	57
20	19.913	87	290
25	24.901	99	330
30	29.912	88	293
35	34.939	61	203
40	39.951	49	163

从测试结果可以看出,当前系统的时间测量精 度在 200~300 ps 范围内,这相对于整形前 10 ns 量 级的时间误差具有很大的提升,可见在系统中添加 整形电路可有效减小回波脉冲能量变化幅度,但是 该精度仍然远大于定时电路仿真中的 73.6 ps^[14], 仍可对电路进行继续优化,达到更高的精度。当前 优化的方向有两个:一是对激光调制发射部分进行 优化,减小发射脉冲的上升下降时间,优化脉冲边沿 波形;二是优化接收部分电路,抑制测距系统的电路 噪声,达到更好的测距效果。

4 结 论

为了提高激光测距系统中时间鉴别的定时精度,设计了基于恒比定时整形和峰值检波整形的两种脉冲信号整形电路,通过实验对两种整形方式进行了验证。结果表明,两种脉冲整形电路均能对大

幅度能量变化引发的判决时间误差进行校正,从10 ns量级降低到100 ps量级,大大减少了能量变化对 脉冲整形电路的影响,且恒比定时整形电路的测试 结果显示,恒比定时电路的时间鉴别能力受距离、回 波脉冲幅度影响很小。本设计中在回波脉冲到达 后,除了进行脉冲整形外,还对脉冲进行了一次可调 节的门限判决,保证该门限可有效避免噪声信号对 计时的误触发,但不会影响链路灵敏度。在激光雷 达的实际使用中若想达到更高的时间鉴别精度,整 形模块的判决精度需要达到50 ps量级才能满足 1 cm 精度的脉冲测距需求。该指标的达成需进一 步降低系统中噪声水平,需要对电源、布线芯片选型 重新进行优化,并互相兼顾,以全面满足系统的性能 要求。

参考文献

- [1] Szplet R, Kalisz J, Szymanowski R. Interpolating time counter with 100 ps resolution on a single FPGA device [J]. IEEE Transactions on Instrumentation and Measurement, 2000, 49(4): 879-883.
- Zong Z Y, Xu D P, Tian X C, et al. Laser pulse generation technology with high adjustment precision
 [J]. Chinese Journal of Lasers, 2017, 44 (1): 0105001.

宗兆玉, 许党朋, 田小程, 等. 高精度整形激光脉冲 产生 技术研究 [J]. 中国激光, 2017, 44 (1): 0105001.

- [3] Xie G C. 飞行目标激光测距技术研究[D]. Mianyang: China Academy of Engineering Physics, 2018. 谢庚承.飞行目标激光测距技术研究[D]. 绵阳:中 国工程物理研究院, 2018.
- [4] Haas W, Peter D. A novel peak amplitude and time detector for narrow pulse signals [J]. IEEE Transactions on Instrumentation and Measurement, 1986, IM-35(4): 547-550.
- [5] Liu P, Li P, Chen H M, et al. Fluctuating threshold circuit based oil constant fraction discrimination for pulse laser fuze[J]. Journal of Detection & Control, 2009, 31(3): 19-23.
 刘鹏, 栗苹, 陈慧敏, 等. 脉冲激光引信恒比定时浮动阈值电路[J]. 探测与控制学报, 2009, 31(3): 19-23.
- [6] Huang Z. Research on key technologies of high

precision pulse laser ranging [D]. Nanjing: Nanjing University of Science and Technology, 2012. 黄钊. 脉冲激光测距高精度关键技术研究 [D]. 南京: 南京理工大学, 2012.

- [7] Li X. Laser fuze high precision and high frequency pulse ranging technology [D]. Nanjing: Nanjing University of Science and Technology, 2013.
 李枭. 激光引信高精度高频率脉冲测距技术[D]. 南 京:南京理工大学, 2013.
- [8] Cheng P F. Research of key technologies of wide dynamic range and high precision laser distance measurement[D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2014. 程鹏飞. 大动态范围高精度激光测距关键技术研究

注册 N. 八列 20 20 20 回 11 月 2 做 几 测 坦 天 挺 仅 不 研 允 [D]. 上海: 中国科学院上海技术物理研究所, 2014.

- [9] Feng Y F, Qian S Q, Kong J H. Research on a narrow pulse peak voltage detection and hold circuit
 [J]. Instrumentation Technology, 2017(7): 5-7, 45.
 冯亚峰,钱素琴,孔建会.一种窄脉冲峰值电压检测
 保持电路的研究[J].仪表技术,2017(7): 5-7, 45.
- [10] Shapiro J H, Reinhold R W, Park D. Performance analyses for peak-detecting laser radars [J]. Proceedings of SPIE, 1986, 0663: 38-56.
- [11] Lai J C, Jiang H J, Yan W, et al. Range uncertainty distribution of direct-detection laser radar with a peak-detecting routine [J]. Optik, 2013, 124 (21): 5202-5205.
- [12] Xu W P, Huang G H. Research on advanced technology of time measurement for LIDAR based on constant-fraction discrimination [J]. Infrared, 2014, 35(4): 18-24.
 许万鹏,黄庚华.基于恒比定时鉴别的激光雷达时间测量前沿技术研究[J]. 红外, 2014, 35(4): 18-24.
- [13] Zhu S X, Zhao Y Q, Ye M, et al. Saturated echo signal algorithm for wide dynamic range lidar [J]. Acta Photonica Sinica, 2018, 47(12): 1228003.
 朱世贤,赵毅强,叶茂,等.大动态范围激光雷达回 波信号饱和处理算法[J].光子学报, 2018, 47(12): 1228003.
- [14] Lu T X, Zhang Y R, Zhang Y F, et al. A constant fraction discriminator for laser pulse ranging [J]. Microelectronics, 2019, 49(6): 812-816.
 路统霄,张有润,章玉飞,等.一种用于激光脉冲测距的恒比定时电路[J].微电子学, 2019, 49(6): 812-816.